trabajo 4

Views:
 
Category: Entertainment
     
 

Presentation Description

No description available.

Comments

Presentation Transcript

PowerPoint Presentation:

PROCESOS INDUSTRIALES ÁREA MANUFACTURA Distribuciones de probabilidad J ulio Alberto Ramírez Matricula: 1110139 2 ¨A¨

PowerPoint Presentation:

INTRODUCCIÓN Durante el desarrollo de esta presentación se desarrollan ejercicios distribuciones de probabilidad. * Bernoulli * Binomial * Poisson * Normal * Gamma * T de student

PowerPoint Presentation:

DISTRIBUCIÓN DE BERNOULLI Al lanzar un dado, ver si se obtiene un 5 ( éxito ) o cualquier otro valor ( fracaso ). Lo primero que se hace en este experimento es identificar el fracaso o el éxito, ya que en este de bernoulli solo se pude obtener dos resultados 1)Se considera éxito sacar un 5, a la probabilidad según el teorema de Laplace (casos favorables dividido entre casos posibles) será 1/5. p = 1/5 2) Se considera fracaso no sacar un 6, por tanto, se considera fracaso sacar cualquier otro resultado, entonces a la probabilidad se le restará 1. q= 1 –p p= 1- 1/5 p=4/5 3) La variable aleatoria X medirá "número de veces que sale un 5", y solo existen dos valores posibles, 0 (que no salga 5) y 1 (que salga un 5). Por lo que el parámetro es (X= Be(1/5) p=1/5

PowerPoint Presentation:

La probabilidad de que obtengamos un 5 viene definida como la probabilidad de que X sea igual a 1. Entonces ahora los datos que obtuvimos se sustituyen en la fórmula. P(x=1) = (1/5) 1 * (4/5) 0 = 1/5 = 0.2 La probabilidad de que NO obtengamos un 6 viene definida como la probabilidad de que X sea igual a 0 . P(x=0) = (1/5) 0 * (4/5) 1 = 4/5 = 0.8 Este experimento nos dice que hay 0.2 de probabilidad de que salga el numero 5 en el dado, y de que no salga ese numero existe la probabilidad del 0.8. DISTRIBUCIÓN DE BERNOULLI

PowerPoint Presentation:

DISTRIBUCIÓN BINOMIAL Se lanza una moneda cuatro veces. Calcular la probabilidad de que salgan más caras que cruces. B(4, 0.5) p = 0.5q = 0.5

PowerPoint Presentation:

DISTRIBUCIÓN BINOMIAL En el ejemplo anterior se calculan las probabilidades de que al tirar una moneda salgan mas caras que cruces y para eso La moneda es lanzada 4 veces de esos 4 tiros solo 1 cae cara y los otros 3 tiros cae cruz pero el resultado va a variar probabilidades: 1cara-3 cruces 2 caras- 2 cruces 3 caras- 1 cruz 2 cruces- 2 caras

PowerPoint Presentation:

Distribución de poisson Si un banco recibe en promedio 6 cheques sin fondo por día, ¿ Cuales son las probabilidades reciba, Cuatro cheque sin fondo en un día dado, B)reciba 10 cheques sin fondo en cualquiera de dos días consecutivos Variable discreta= cantidad de personas Intervalo continuo= una hora Formula

PowerPoint Presentation:

P(x): Probabilidad de que ocurran x éxitos : Número medio de sucesos esperados por unidad de tiempo. e: es la base de logaritmo natural cuyo valor es 2.718 X: es la variable que nos denota el número de éxitos que se desea que ocurran A) x= Variable que nos define el número de cheques sin fondo que llega al banco en un día cualquiera; El primer paso es extraer los datos Tenemos que o el promedio es igual a 6 cheques sin fondo por día e= 2.718 x= 4 por que se pide la probabilidad de que lleguen cuatro cheques al día

PowerPoint Presentation:

Remplazar valores en las formulas = 6 e= 2.718 X= 4 P(x=4, = 6) = (6)^4(2.718)^-6 4! =( 1296)(0,00248) 24 =o,13192 Es la probabilidad que representa de que lleguen cuatro cheques sin fondo al día

PowerPoint Presentation:

X= es la variable que nos define el número de cheques sin fondo que llegan en dos días consecutivos =6x2= 12 Cheques sin fondo en promedio que llegan al banco en dos días consecutivos Lambda por t comprende al promedio del cheque a los dos días DATOS = 12 Cheques sin fondo por día e= 2.718 X=10 P(x=10, =12 )= (129^10(2.718)^-12 10! =( 6,191736*10^10)(0,000006151) 3628800 =0,104953 es la es la probalidad de que lleguen 10 cheques sin fondo en dos días consecutivos

PowerPoint Presentation:

DISTRIBUCIÓN N ORMAL Una variable aleatoria continua, X, sigue una distribución normal de media μ y desviación típica σ, y se designa por N(μ, σ), si se cumplen las siguientes condiciones: 1. La variable puede tomar cualquier valor: (-∞, +∞ ) 2. La función de densidad, es la expresión en términos de ecuación matemática de la curva de Gauss:

PowerPoint Presentation:

DISTRIBUCIÓN N ORMAL El campo de existencia es cualquier valor real, es decir, (-∞, +∞). Es simétrica respecto a la media µ. Tiene un máximo en la media µ. Crece hasta la media µ y decrece a partir de ella. En los puntos µ − σ y µ + σ presenta puntos de inflexión. El eje de abscisas es una asíntota de la curva. El área del recinto determinado por la función y el eje de abscisas es igual a la unidad . Al ser simétrica respecto al eje que pasa por x = µ , deja un área igual a 0.5 a la izquierda y otra igual a 0.5 a la derecha . La probabilidad equivale al área encerrada bajo la curva. p(μ - σ < X ≤ μ + σ) = 0.6826 = 68.26 % p(μ - 2σ < X ≤ μ + 2σ) = 0.954 = 95.4 % p(μ - 3σ < X ≤ μ + 3σ) = 0.997 = 99.7 %

PowerPoint Presentation:

DISTRIBUCIÓN DE GAMMA Parámetros A continuación se sustituye la formula en base alas 8 horas.

PowerPoint Presentation:

Formula DISTRIBUCIÓN DE GAMMA

A continuación se muestran las muestras que se tomaron para resolver el problema.:

Un fabricante de focos afirma que su producto durará un promedio de 500 horas de trabajo. Para conservar este promedio esta persona verifica 25 focos cada mes. Si el valor y calculado cae entre –t 0.05 y t 0.05, él se encuentra satisfecho con esta afirmación. ¿Qué conclusión deberá él sacar de una muestra de 25 focos cuya duración fue?: DISTRIBUCIÓN T DE STUDENT A continuación se muestran las muestras que se tomaron para resolver el problema.

PowerPoint Presentation:

520 521 511 513 510 µ=500 h 513 522 500 521 495 n=25 496 488 500 502 512 Nc=90% 510 510 475 505 521 X=505.36 506 503 487 493 500 S=12.07 DISTRIBUCIÓN T DE STUDENT Muestras

PowerPoint Presentation:

Para poder resolver el problema lo que se tendrá que hacer será lo siguiente se aplicara una formula la cual tendremos que desarrollar con los datos con los que contamos. Tendremos que sustituir los datos t= x - μ SI n α = 1- Nc = 10% v = n-1 = 24 t = 2.22 Solución:

PowerPoint Presentation:

Procedimiento: se demostrara la forma en que se sustituirán los datos. VALOR DE LOS DATOS. . APLICACION DE LA FORMULA µ=500 h t= 505.36-500 t = 2.22 n=25 12.07 25 Nc=90 % v = 25 -1 = 24 X=505.36 α = 1- 90% = 10% S=12.07

PowerPoint Presentation:

[email protected] http://www.facebook.com/[email protected] http://jullio-rmz10.bligoo.com.mx/

authorStream Live Help