1303275485614622

Views:
 
Category: Entertainment
     
 

Presentation Description

No description available.

Comments

Presentation Transcript

روش هاي تعيين حجم نمونه:

روش هاي تعيين حجم نمونه الف) اصل تجربه ميانگين سه تحقيق مشابه استفاده از نسبت هزينه ب)استفاده از تكنيكهاي آماري برآورد ميانگين (جامعه محدود (1) ، جامعه نامحدود (2) ) برآورد نسبت (جامعه محدود (3) ، جامعه نامحدود (4) ) ج)استفاده از جدول مورگان

حالت اول)تعيين اندازه نمونه زماني كه هدف تحقيق برآورد ميانگين جامعه باشد:

حالت اول)تعيين اندازه نمونه زماني كه هدف تحقيق برآورد ميانگين جامعه باشد داده هایی که دارای مقیاس نسبی و فاصله ای اند از نوع داده های میانگین پذیرند. در این نوع داده ها برای تعیین اندازه نمونه از تخمین فاصله ای میانگین استفاده می شود. یعنی: در صورتي كه جامعه نامحدود باشداز فرمول زير استفاده مي كنيم:

ادامه تعيين اندازه نمونه زماني كه هدف تحقيق برآورد ميانگين جامعه باشد:

ادامه تعيين اندازه نمونه زماني كه هدف تحقيق برآورد ميانگين جامعه باشد در صورتي كه جامعه محدود باشد در نتیجه مقدار  با عامل ) √ N-n)/ ) N-1) اصلاح میگردد و بنابراین از فرمول زير استفاده مي كنيم:

ادامه تعيين اندازه نمونه زماني كه هدف تحقيق برآورد ميانگين جامعه باشد:

ادامه تعيين اندازه نمونه زماني كه هدف تحقيق برآورد ميانگين جامعه باشد اگر انحراف معیار جامعه نامعلوم باشد بنابراین توزیع t استیودنت خواهیم داشت . برای مطالعه بیشتر به کتاب عادل آذر مراجعه نمایید.

ادامه تعيين اندازه نمونه زماني كه هدف تحقيق برآورد ميانگين جامعه باشد:

ادامه تعيين اندازه نمونه زماني كه هدف تحقيق برآورد ميانگين جامعه باشد اگر نرمال بودن توزیع x ¯ برای ما معلوم نباشد به عبارتی توزیع غیرنرمال و یا برخورداری از توزیع t استیودنت معلوم نباشد میتوان به کمک قضیه چی بی شف عمل کرد.

مثال: پژوهشگري علاقمند است ميانگين رشدكاري كاركنان يك سازمان را تعيين كند او دقت برآورد را 5 در نظر گرفته و تصور مي كند انحراف معيار نمره هاي رشد كاري كاركنان 20 نمره باشد اندازه نمونه را در سطح خطاي 5 درصد برآورد نماييد. :

مثال: پژوهشگري علاقمند است ميانگين رشدكاري كاركنان يك سازمان را تعيين كند او دقت برآورد را 5 در نظر گرفته و تصور مي كند انحراف معيار نمره هاي رشد كاري كاركنان 20 نمره باشد اندازه نمونه را در سطح خطاي 5 درصد برآورد نماييد. بنابراین اندازه نمونه مورد نیاز 62 نفر است.

حالت دوم)تعيين تعداد نمونه زماني كه هدف تحقيق برآورد نسبت موفقيت در جامعه باشد:

حالت دوم)تعيين تعداد نمونه زماني كه هدف تحقيق برآورد نسبت موفقيت در جامعه باشد در صورتي كه جامعه محدود باشد از فرمول زير استفاده مي كنيم: در صورتي كه جامعه نامحدود باشد از فرمول زير استفاده مي كنيم:

مثال: مطالعه اي براي تعيين نسبت موفقيت مديران وظيفه مدار در سطح سازمانهاي دولتي كشور برنامه ريزي شده است. اين تصور وجود دارد كه نسبت مزبور بزرگتر از 0.45 نيست. حدود اطمينان 95درصد و سطح خطاي مجاز 0.08 مورد نظر است. بنظر شما چند مدير بايستي مورد مطالعه قرار گيرد. :

مثال: مطالعه اي براي تعيين نسبت موفقيت مديران وظيفه مدار در سطح سازمانهاي دولتي كشور برنامه ريزي شده است. اين تصور وجود دارد كه نسبت مزبور بزرگتر از 0.45 نيست. حدود اطمينان 95درصد و سطح خطاي مجاز 0.08 مورد نظر است. بنظر شما چند مدير بايستي مورد مطالعه قرار گيرد. بنابراین اندازه نمونه مورد نیاز 149 مدیر است.

جدول مورگان:

جدول مورگان یکی از ساده ترین راههای تعیین حجم نمونه استفاده از جدول مورگان است.در جدول مورگان حجم جامعه ذکر شده و در مقابل آن حجم نمونه ی متناسب با آن آ مده است . Kerjcie and Morgan Determining Sample Size for research activities. Educational and psychological Measurement: 1970.30.607-610.

چند نكته مهم تكميلي:

چند نكته مهم تكميلي سطح اطمينان در صورتي كه ارائه نشود 95 درصد در نظر گرفته شود مقدار p يا نسبت موفقيت جهت حداكثر شدن تعداد نمونه 0.5 در نظر گرفته شود . بنابراین در صورتی که مقدار P را نداشته باشیم میتوان آن را مساوی 50% گرفت و در این صورت n حداکثر مقدار خود را پیدا خواهد کرد. مقدار خطاي مجاز در تحقيقات علوم انساني بطور تجربي 0.07 در نظر گرفته مي شود

آزمون فرض آماری:

آزمون فرض آماری

آزمون فرضيه هاي آماري Hypothesis Testing :

آزمون فرضيه هاي آماري Hypothesis Testing فرضیه حدسی زیرکانه در خصوص پارامتر جامعه است. فنون آماری مناسب برای بررسی صحت یا سقم فرضیه ها، فنون ”آزمون فرض آماری“ هستند. استفاده از آزمون زماني است كه علاوه بر سوال در تحقيق خود فرضيه نيز داشته باشيم كه بطور كلي هدف از آزمون آماري آن است كه با توجه به اطلاعات بدست آمده از داده هاي نمونه، حدس خود را در مورد جامعه به طور قوي رد يا قبول كنيم. در واقع هر حکمی درباره جامعه را یک فرض آماری می نامند که قابل قبول بودن آن باید برمبنای اطلاعات حاصل از نمونه گیری از جامعه بررسی شودو

PowerPoint Presentation:

بر اساس برهان خلف H₀ بايستي نقيض ادعا(فرضيه پژوهش) باشد و H₁ همان ادعاي ما مي باشد. اما اگر چنانچه علامت مساوي در قرار گرفت بايستي جاي ادعا و نقيض ادعا عوض شود يعني ملاك اصلي علامت مساوي (=) مي باشد كه بايستي حتما در H₀ قرار گيرد. بنابراین قاعده این است که همواره باید فرض صفر در بر گیرنده تساوی باشد. در زمینه نظریه اخیر میتوان پذیرفت که H₀ گاهی بیان کننده ادعا و گاهی بیان کننده نقیض ادعا است.آنچه تعریف H₀ را شکل می دهد آزمون پذیر بودن آن است و ان چیزی نیست جز آنکه برای H₀ باید تساوی (=) وجود داشته باشد. فرضيه هاي آماري بر دو نوع فرضيه صفر( H₀ ) و فرضيه مقابل( H₁ ) مي باشد Hypothesis e Alternative H Hypothesis Null H : : 1 0

مثال1) فرضيه پژوهشي زير را در نظر گرفته و فرضيه هاي صفر و مقابل آنرا صورتبندي نماييد. ”نسبت مديران مشاركت جو در سازمان بيش از 70 درصد مي باشد“:

مثال1) فرضيه پژوهشي زير را در نظر گرفته و فرضيه هاي صفر و مقابل آنرا صورتبندي نماييد. ” نسبت مديران مشاركت جو در سازمان بيش از 70 درصد مي باشد“ ادعا: p > 0.7 چون علامت مساوي ندارد لذا در فرضيه مقابل قرار مي گيرد . پس داريم: نقيض ادعا ادعا î í ì > £ 7 . 0 : 7 . 0 : 1 0 p H p H

مثال2) فرضيه پژوهشي زير را در نظر گرفته و فرضيه هاي صفر و مقابل آنرا صورتبندي نماييد. ”ميانگين معدل دانشجويان كلاس دست كم 13 مي باشد“:

مثال2) فرضيه پژوهشي زير را در نظر گرفته و فرضيه هاي صفر و مقابل آنرا صورتبندي نماييد. ” ميانگين معدل دانشجويان كلاس دست كم 13 مي باشد“ ادعا: µ > 13 چون علامت مساوي دارد لذا در فرضيه صفر قرار مي گيرد . پس داريم: ادعا نقيض ادعا î í ì < ³ 13 : 13 : 1 0 m m H H

سطح معني داري Significant Level:

سطح معني داري Significant Level روش كار اين است كه فرض H₀ را بنفع H₁ رد كنيم بشرط اينكه از يك آزمون آماري، مقداري بدست آوريم كه احتمال وقوع آن مقدار با توجه به H₀ برابر يا كمتر از يك احتمال بسيار كوچك باشد که با α نشان داده می شود . اين احتمال وقوع كوچك را سطح معني داري گويند. مقادیر مرسوم برای α ، 0/01 و 0/05 است. از آنجا که مقدار α در تعیین اینکه H₀ باید رد شود یا نه دخالت مستقیم دارد، الزاما رعایت عینیت در تحقیق ایجاب می کند که α را پیش از شروع به جمع آوری داده ها مشخص کنیم.

PowerPoint Presentation:

سطح معني داري= 0.5 سطح معني داري= 0.1 سطح معني داري= 0.01 0.25 0.25 0.05 0.05 0.005 0.005 سطح معني داري= 0.1 ؟

خطاهای آماری:

خطاهای آماری هنگام اتخاذ تصمیم درباره ممکن است دو نوع خطا پیش می آید: خطاي نوع اول( α ): رد كردن H₀ در حالي كه H₀ درست است. خطاي نوع دوم( β ): پذيرفتن H₀ در حالي كه H₀ غلط است. گزينه هاي صحيح نتيجه گيري از نمونه درست است H₀ غلط است H₀ پذيرفته مي شود H₀ تصميم درست است β رد مي شود H₀ α تصميم درست است

ادامه خطاهای آماری:

احتمال وقوع خطای نوع اول با α ارتباط دارد، هرچه α بزرگتر شود احتمال اینکه H₀ را به غلط رد کنیم یا به عبارت دیگر احتمال اینکه مرتکب خطای نوع اول شویم، افزایش می یابد. احتمال α به مقدار مشخص پارامتر در دامنه بستگی دارد که H₀ آن را در بر میگیرد و حال آنکه β به مقدار پارامتر در دامنه بستگی دارد که H₁ آن را در برمی گیرد. بین α و β یک رابطه معکوس وجود دارد. با بالا رفتن α مقدار β کاهش می یابد و بالعکس. آنچه مسلم است مجموع α و β الزاما یک نیست. توان یا قدرت آزمون عبارت است از احتمال رد کردن H₀ وقتی که در حقیقت H₀ نادرست باشد، یعنی : توان آزمون = 1- احتمال وقوع خطای نوع دوم = 1- β آنچه باعث کاهش خطای نوع اول و دوم و همچنین موجب افزایش توان آزمون می شود، افزایش حجم نمونه است. ادامه خطاهای آماری