1.8V LVDS Clock Buffers by IDT: Low-power, High-performance


Presentation Description

This video presentation will introduce users to IDT's 1.8 V LVDS clock fanout buffer family offering high-performance AC characteristics similar to that of 3.3 V devices. The new low-voltage fanout buffers enable customers to save up to 60% power and heat dissipation without sacrificing accuracy, bit error rates, or functionality. Reducing power consumption is a key objective for many electronic designs, especially in high-performance systems. High-speed AC performance previously required the selection of high power consumption IC solutions. With IDT's 1.8V differential clock buffer family, designers can now get both: excellent AC performance and low power consumption. The IDT 8P34S family devices are currently sampling to qualified customers and are available in 16- to 40-lead VFQFN packages. Customers may select from the IDT 8P34S1102i (2 output), 8P34S1204i (4 output), 8P34S1106i (6 output), 8P34S1208i (8 output) and 8P34S1212i (12 output) devices. Presented by Vik Chaudhry, Marketing Manager at IDT. For more information about IDT's industry-leading portfolio of fanout buffer products, visit www.idt.com/go/FanoutBuffers.


Presentation Transcript

1.8V High Performance LVDS Fanout Buffer :

1.8V High Performance LVDS Fanout Buffer IDT8P34S Family January 28, 2014 TSD Marketing [email protected]

Product Overview:

Product Overview Offers the low-noise performance of a 3.3V RF-class clock fanout buffer with a power-saving 1.8V supply . LVDS clock fanout buffer family 1.8V power supply Very low additive phase-noise Very low output skew AC performance at the level of 3.3V devices 5 initial family members with 2, 4, 6, 8 and 12 LVDS outputs By using a 1.8V voltage supply, save power consumption versus traditional 2.5V and 3.3V low phase-noise clock fanout buffers without compromising the clock phase-noise budget Easy migration path by re-using the pinout of existing, high-performance buffers of the 8SLVP and 8SLVD family of IDT Status Introduction now Availability Samples are available now Production Now CLK V REF BIAS CLK0 CLK1 SEL/OE V REF BIAS Family of buffers ranging from 2 to 12 outputs Q0 Q12 Q0 Q1

1.8V LVDS Buffer Key Value & Benefit:

1.8V LVDS Buffer Key Value & Benefit High Isolation Low Add. Phase Noise Fast Signal Rise/Fall 70…80 dB 0.04 -0. 1 ps RMS <200 ps Better system SNR Simplifies filtering Relaxes DAC/ADC or PHY requirements Improves accuracy and analog performance Simplifies filtering Improves accuracy and converter performance Up to 1.2 GHz system clocks

Key: Reduced Power Consumption:

Key: Reduced Power Consumption 8SLVD1208i-33 590mW max. 8SLVD1204i-33 346mW max. 8P34S1208i 240mW max. 8P34S1204i 145mW max. 59% 60% 3.3V, LVDS 1.8V, LVDS 8 Output 4 Output

Typical Application Circuit & Packaging:

Typical Application Circuit & Packaging System Clock Alternative Clock Clock Selector Clock Copy #1 Clock Copy #2 Clock Copy #3 Clock Copy #4 Typical Application Precise, low phase-noise, low skew clock copies Small packaging 8P341204i 3x3 mm 2 VFQFN Application range is differential clock distribution in: Wireless RF, base-band and controller Wired telecom (Mux, Switch, OTN, DSLAM) High-performance computing (including cloud and storage) Networking (Router, Switch, Transmission)

PowerPoint Presentation:

8P34S1102i 8P34S1204i 8P34S1106i 8P34S1208i 8P34S1212i 1:2 Fanout 1:4 Fanout 1:6 Fanout 1:8 Fanout 1:12 Fanout Production Production Production Production Production Low Power LVDS Buffer Devices – 8P34S CLK V REF BIAS CLK0 CLK1 SEL/OE V REF BIAS Single Fanout Buffer 0 to 1.2GHz operation Fanout: 2, 4, 6, 8, 12 LVDS outputs Input mux VREF source (BIAS) <200ps rise/tall 40-100fs RMS additive phase noise <20 ps output skew (typ) 1.8V supply Q0 Q1 Q0 Q12

Design Support Collateral:

Design Support Collateral Datasheet: Available Evaluation board: I n preparation (completion February 2014) Device models: IBIS models are available on request Customer board schematics review: available on request Phase noise, output skew, output rise/fall time custom measurements: available on request DESIGN DOCUMENTATION For additional information about Clock and Timing Solutions from IDT, visit our website at www.IDT.com/go/clocks


Transcript My name is Vick Chaudhry, I'm marketing manager for Timing Division at IDT. In this presentation I'll talk about a new family of 1.8 volt buffers from IDT, and we'll show its benefits and features. Reducing power consumption is a clear objective for many new designs especially in high-performance systems. With these new 1.8 volt buffers, designers can now get both excellent performance as well as low-power consumption. This family of buffers consists of five devices. The device function is simple. It distributes a differential clock signal to multiple low skew outputs. Inputs and outputs are at LVDS levels. The family supports devices with two, four, six, eight, and twelve LVDS outputs. Despite the 1.8 volt supply voltage, the performance of these devices is comparable to buffers that supply voltage of 3.3 volts. This family allows for easy migration from IDTs existing 3.3 volt or 2.5 volt buffers to 1.8 volt buffers because these devices are function and footprint compatible with each other. Let's have a look at the key characteristics of this new low-power family. The signal isolation is in the range of 18 dBs; which is a state of the art for clock devices. The excellent on-chip signal isolation helps achieve high signal to noise figures, and it simplifies or avoids external filtering. New devices have additive phase noise as low as 40 femtoseconds thus keeping the bit error rates low. The fast rise and fall time supports interfacing to converters with high sample rates, PHYs, and other high-speed logic. These devices can be used in applications with top frequencies up to 1.2 GHz Now, we are looking at the main benefit, reduction of power consumption. Compared with function and performance comparable parts with 3.3 volt supplies, these new devices can reduce power by almost 60% while maintaining the same level of performance. The standard application for low-power clock family is the distribution of differential signals. Each device generates multiple low phase-noise and low skew copies of the input signal. Because the new device utilizes a fully static design the distribution of NRCs data signals is fully supported. This performance and low-power characteristics is applicable to a wide range of equipment; such as wireless equipment, high-end and mid range routers, networking and switching equipment, storage and high-performance computing equipment. The packaging for all these devices is a standard QFN package and the sizes range from small 3x3 mm to 5x5 mm footprint. Here is a summary of the main features and functions. These devices have two, four, six, eight, and twelve LVDS outputs. Several devices such as four, eight, and twelve output versions have two inputs with an internal multiplexer for signal selection. All devices have internal voltage generator for sound biasing inputs and AC coupled interphases. The output rise time or fall time is faster than 200 picoseconds, and the additive jitter is as low as 40 femtoseconds. You will find more information related to these parts available on the IDT website. Data sheets and IBIS models are available for these devices. Evaluation boards are also available. IDT engineering team offers a schematic review to make sure that interfaces, signal termination, etc. are correctly done. Several application notes related to the interfacing between different Input/output levels and logic levels are available through the website. Please visit us at the IDT website for additional information.

authorStream Live Help