Neurotransmisores

Views:
 
Category: Education
     
 

Presentation Description

No description available.

Comments

Presentation Transcript

NEUROTRANSMISORES : 

NEUROTRANSMISORES Quimica III

Sistema Nervioso : 

www.themegallery.com Sistema Nervioso El Sistema Nervioso, el más completo y desconocido de todos los que conforman el cuerpo humano, asegura junto con el Sistema Endocrino, las funciones de control del organismo. El Sistema Nervioso se encarga por lo general de controlar las actividades rápidas. Además, el Sistema Nervioso es el responsable de las funciones intelectivas, como la memoria y las emociones.Su constitución anatómica es muy compleja, y las células que lo componen, a diferencia de las del resto del organismo, carecen de capacidad regenerativa. Universidad Católica de Córdoba Dr Ruffino Sergio

Sistema Nervioso : 

www.themegallery.com Sistema Nervioso Sistema Nervioso Provee respuestas breves y rápidas a los estímulos Sistema Endocrino Ajusta las respuestas metabólicas y dirige cambios a largo plazo Sistema Nervioso incluye Todo el tejido nervioso del cuerpo Cerebro, cordon espinal, receptores y nervios Unidad básica = neurona Neuroglia= tejido conectivo nervioso Universidad Católica de Córdoba

Sistema Nervioso : 

www.themegallery.com Sistema Nervioso SNC (Sistema Nervioso Central) Encéfalo y cordon o médula espinal Integracion, procesamiento,almacena y coordinacion SNP (Sistema Nervioso Periferal) Tejido nervioso fuera del SNC Nervios: craneales y espinales División aferente lleva información sensorial de los receptores División eferente lleva impulsos motores a los efectores División eferente incluye al sistema nervioso somático - musculos esqueletales Sistema nervioso autónomo - visceras, glandulas Simpatico - gasto de energia, emergencias, Para-simpatico - reserva energia. Universidad Católica de Córdoba Dr Ruffino Sergio

Neurona : 

www.themegallery.com Neurona Soma (cuerpo) - Nucleo y nucleolo - Nissl (gris), RER, Mitoc Pericarion (citoplasma) - no centriolos Neuro-Citoesqueleto - Neurofilamentos, neurotubulos y neurofibrillas Dendritas - procesos que salen del cuerpo, terminan en Espinas dendriticas Montículo axónico - segmento inicial unido al cuerpo Axón - proceso citoplasmico, propaga potencial de accion Axoplasma, axolema - lisosomas, neurocitoesqueleto Colaterales Universidad Católica de Córdoba Dr Ruffino Sergio

La Neurona : 

www.themegallery.com La Neurona Terminación axónica - telodendrias Bulbo terminal sináptico Capas de mielina Nodos de Ranvier Universidad Católica de Córdoba Dr Ruffino Sergio

Elementos de comunicación neuronal : 

www.themegallery.com Elementos de comunicación neuronal Universidad Católica de Córdoba Dr Ruffino Sergio Sinapsis: - Estructura en la cual acontece el cambio de información entre las neuronas. Neurona presináptica o transmisor: - Neurona que va a transmitir una información Neurona postsináptica o receptor: - Neurona que a recibir la información Impulso Nervioso: - Información recibida por la neurona y que, codificada, se propaga dentro de la neurona a través de fenómenos eléctricos. Cavidad sináptica: - Espacio de la sinapsis que separa las membranas de las células transmisoras y receptoras. Está lleno de fluido sináptico. La señal eléctricamente liberada por la neurona presináptica en este espacio no puede traspasar sus límites. Neurotransmisores: - Sustancias químicas especiales liberadas por la membrana emisora presináptica que se difunden hasta los receptores de la membrana de la neurona receptora postsináptica. Los neurotransmisores permiten que los impulsos nerviosos de una célula influyan en los impulsos nerviosos de otra y, así, las células del cerebro pueden dialogar, por así decirlo.

Sinapsis : 

www.themegallery.com Sinapsis Sinapsis: zona especializada de contacto entre las neuronas donde tiene lugar la transmisión de la información. Zona de contacto especializada entre una célula presináptica y una célula postsináptica (nerviosa, muscular o glandular), siendo el flujo de información de la 1ª a la 2ª. TIPOS: . Eléctricas: poco frecuentes en mamíferos . Químicas: la inmensa mayoría Universidad Católica de Córdoba Dr Ruffino Sergio

Sinapsis Eléctricas : 

www.themegallery.com Sinapsis Eléctricas El potencial de acción se transmite a la neurona postsináptica por el flujo directo de corriente: continuidad entre citoplasmas. La distancia entre membranas es de unos 3 nm. El flujo de corriente pasa a través de uniones comunicantes (gap junctions formadas por conexinas. Es bidireccional. No intervienen los neurotransmisores. Función: desencadenar respuestas muy rápidas. Universidad Católica de Córdoba Dr Ruffino Sergio

Sinapsis Químicas : 

www.themegallery.com Sinapsis Químicas La sinapsis química se establece entre células que están separadas entre sí por un espacio de unos 20 nanómetros, la llamada hendidura sináptica. Se producen por los NT Su “Historia” se divide en: Síntesis Almacenamiento Liberación Interacción con el receptor Desactivación Universidad Católica de Córdoba Dr Ruffino Sergio

Sinapsis Químicas : 

www.themegallery.com Sinapsis Químicas Los receptores median los cambios en el potencial de membrana de acuerdo con: – La cantidad de NT liberado – El tiempo que el NT esté unido a su receptor Existen dos tipos de potenciales postsinápticos: PEPS – potencial excitatorio postsináptico: despolarización transitoria (apertura de canales Na+). Un solo PEPS no alcanza el umbral de disparo del potencial de acción. PIPS – potencial inhibitorio postsináptico: la unión del NT a su receptor incrementa la permeabilidad a Cl- y K+, alejando a la membrana del potencial umbral. Universidad Católica de Córdoba Dr Ruffino Sergio

Sinapsis Químicas Tipos : 

www.themegallery.com Sinapsis Químicas Tipos Universidad Católica de Córdoba Dr Ruffino Sergio

Sinapsis Químicas : 

www.themegallery.com Sinapsis Químicas Universidad Católica de Córdoba Dr Ruffino Sergio Recaptación a la terminacion nerviosa presinaptica mediante transporte activo 2º (NT no peptídicos). Degradación (proteolisis de neuropépidos). Difusion lejos de la membrana postsinaptica. Mientras el NT esté unido a su receptor se está produciendo el potencial (PEPS o PIPS), por tanto es necesario eliminar el NT ¿Cómo?:

Neurotransmisores : 

www.themegallery.com Neurotransmisores Universidad Católica de Córdoba Dr Ruffino Sergio Concepto: Son sustancias químicas encargadas de establecer la comunicación sináptica entre las neuronas.

Slide 15: 

www.themegallery.com Universidad Católica de Córdoba Dr Ruffino Sergio Criterios para neurotransmisor 1. Ser sintetizado en una neurona 2. Estar presente en el pie presináptico y ser liberado en cantidades suficientes para ejercer una acción sobre la neurona postsináptica u órgano efector 3. Existen agonista o antagonistas que simulan o bloquean su acción 4. Existen mecanismo de degradación o captación alrededor de la hendidura sináptica 5. Se liberan por la entrada de Ca+2 en la neurona

Clasificación de acuerdo a la estructura : 

www.themegallery.com Universidad Católica de Córdoba Dr Ruffino Sergio Clasificación de acuerdo a la estructura 1. Ester: Acetilcolina 2. Aminoácidos modificados: Catecolaminas (dopamina, noradrenalina y adrenalina), indolaminas (5´hidroxitriptamina = serotonina) y la histamina, y el GABA (ácido ?-aminobutírico) 3. Aminoácidos: Acido aspártico y glutámico, la glicina, taurina 4. Péptidos: Bradiquinina, encefalinas, endorfinas, gastrina, oxitocina, colecistoquinina, peptido intestinal vasoactivo, vasopresina, neurotensina, melanotropina, sustancia P, somatostatina 5. Purínicos: Adenosina, AMP, ADP y ATP

Slide 17: 

www.themegallery.com Universidad Católica de Córdoba Dr Ruffino Sergio NT Excitadores ACETILCOLINA ASPARTATO DOPAMINA HISTAMINA NORADRENALINA GLUTAMATO 5-HIDROXITRIPTAMINA

Slide 18: 

www.themegallery.com Universidad Católica de Córdoba Dr Ruffino Sergio NT Inhibidores 4- aminobutirato (GABA) Glicina Taurina

Sintesis : 

www.themegallery.com Sintesis Primera Etapa (sintesis) Uno o múltiples pasos enzimáticos sobre un precursor captado por la neurona del medio extracelular Los NT “clásicos” se sintetizan en la vecindad de su zona de liberación Los neuropéptidos se sintetizan en el soma y el transporte axonal hace el “delivery”. Universidad Católica de Córdoba Dr Ruffino Sergio

Slide 20: 

www.themegallery.com Universidad Católica de Córdoba Dr Ruffino Sergio Almacenamiento del Neurotransmisor Las Vesículas Sinápticas nacen en el soma, viajan por el transporte axonal y se cargan con el NT. Contienen Proteínas Recaptadoras que secuestran el NT “empaquetandolo” y protegiendolo de la “degradación enzimática”. Se movilizan hacia la zona activa donde se acoplan a la membrana presináptica

Slide 21: 

www.themegallery.com Universidad Católica de Córdoba Dr Ruffino Sergio Liberación del Neurotransmisor La Zona activa está conformada por varias vesículas “ atracadas ” rodeadas por 10 canales de Calcio voltaje dependientes (microdominio). El Calcio es el Intermediario entre la señal eléctrica despolarizante y la exocitosis del Neurotransmisor. la entrada de Ca++, como consecuencia de la despolarización, que abre los canales de Ca++, rompe la anastomosis vesícula-membrana y libera al espacio sináptico el neurotransmisor.

Slide 22: 

www.themegallery.com Universidad Católica de Córdoba Dr Ruffino Sergio Liberación del Neurotransmisor Una vez que el neurotransmisor ha sido liberado al espacio sináptico, se difunde por el mismo y puede seguir las siguientes rutas: · Fijación en los lugares específicos de membrana tanto presináptica como postsináptica, que son los receptores. · Dispersión en el espacio sináptico y actuación fuera de la sinapsis como un neuromodulador. · Recaptación presináptica del neurotransmisor. · Catabolización enzimática del neurotransmisor y por tanto degradación de la Estructura.

Slide 23: 

www.themegallery.com Universidad Católica de Córdoba Dr Ruffino Sergio Interacción con los receptores -Receptor: proteína superficial de la membrana unida a un canal iónico (ionotrópicos) y/o acoplada a proteínas intracelures que transducen la señal intracelularmente o al núcleo. -La unión del NT con el receptor provoca cambios conformacionales en este último.

Sinapsis Químicas : 

www.themegallery.com Sinapsis Químicas El NT se debe unir a proteínas receptoras específicas en la membrana postsináptica. Esta unión origina un cambio de conformación del receptor. Dos principales categorías de receptores: • canales iónicos operados por ligando: receptores ionotrópicos • receptores acoplados a proteínas G: receptores metabotrópicos Universidad Católica de Córdoba Dr Ruffino Sergio

Slide 25: 

www.themegallery.com Universidad Católica de Córdoba Dr Ruffino Sergio Interacción con los receptores Si el canal es permeable al Na, despolariza más la célula con efecto excitatorio y generando un potencial excitatorio post-sináptico o PEPS (AC y Glutamato)

Slide 26: 

www.themegallery.com Universidad Católica de Córdoba Dr Ruffino Sergio Interacción con los receptores Si el canal es permeable al Cl repolariza más la célula con efecto inhibitorio generando un potencial inhibitorio post-sináptico o PIPS (GABA)

Sinapsis Químicas : 

www.themegallery.com Sinapsis Químicas Llega el potencial de acción a la terminación presináptica. Activación de canales de Ca+2 voltaje dependientes. El aumento del Ca+2 citosólico provoca la fusión con la MP de las vesículas de secreción preexistentes que contienen el NT. Las vesículas liberan el NT a la hendidura sináptica (exocitosis). Difusión del NT. Unión a receptores postsinápticos. Apertura de canales iónicos (Na+, K+ o Cl-): despolarización o hiperpolarización. Potencial de acción postsináptico. Universidad Católica de Córdoba Dr Ruffino Sergio

Slide 28: 

www.themegallery.com Universidad Católica de Córdoba Dr Ruffino Sergio Interacción con los receptores .

Slide 29: 

www.themegallery.com Universidad Católica de Córdoba Dr Ruffino Sergio Inactivación de Neurotransmisores . Dispersión del NT por simple difusión fuera de la sinapsis .Recaptación del NT por la presinapsis (Aminoácidos y aminas) .Destrucción enzimática en la propia hendidura sináptica (AC en la unión neuromuscular)

Slide 30: 

www.themegallery.com Universidad Católica de Córdoba Dr Ruffino Sergio Difución de Neurotransmisores La última etapa que podemos definir en la sinapsis es la difusión del neurotransmisor. Esto nos permite incluir el concepto de neuromodulador, que produce sus efectos a grandes distancias del lugar de secreción, y que afecta a grupos neuronales y otras áreas de intervención. Este concepto es fundamental en la secreción de neuropéptidos más que de neurotransmisores clásicos

Slide 31: 

www.themegallery.com 1 Potencial de Acción 2 Las vesiculas se Unen a la membrana 3 El NT es liberado al espacio sinaptico Axon de la Neurona Eferente Vesiculas NEURONA EFERENTE Membrana sináptica SINAPSIS ESPACIO SINAPTICO NEURONA RECEPTORA Canales ionicos Moleculas de NT 4 Neurotransmisor entrando al receptor Neurona receptora 5 Canales ionicos abiertos Receptor Ion Neurotransmisor 6 Canales ionicos cerrados Nerutransmosor rechazado Universidad Católica de Córdoba Dr Ruffino Sergio

MONOAMINAS : 

www.themegallery.com MONOAMINAS Universidad Católica de Córdoba Dr Ruffino Sergio - Constituyen el grupo principal de neurotransmisores del sistema nervioso . La característica diferencial de estas sustancias es la presencia de un grupo amino (-NH2). - Forman dos grupos: las catecolaminas, derivadas de la fenilalanina y las indolaminas, que derivan del triptófano. - Las catecolaminas incluyen la dopamina, la noradrenalina y la adrenalina; mientras que en las indolaminas es la serotonina su neurotransmisor

Síntesis de Catecolaminas : 

www.themegallery.com Síntesis de Catecolaminas Universidad Católica de Córdoba Dr Ruffino Sergio

Adrenalina y Noradrenalina : 

www.themegallery.com Adrenalina y Noradrenalina Universidad Católica de Córdoba Dr Ruffino Sergio La noradrenalina se sintetiza en las terminaciones sinápticas a partir del aminoácido tirosina por acción de la tirosina hidroxilasa, produciéndose la dopa la cual, mediante la dopa descarboxilasa se convierte en dopamina (DA), la primera de las catecolaminas. La dopamina, por hidroxilación con la b-hidroxi-dopamina se transforma en noradrenalina (NorA), que es la segunda de las catecolaminas. Finalmente, la NorA, por una metilación con la feniletanolamina N-metiltransferasa (PNMT), se convierte en adrenalina (Adr).

Receptores : 

www.themegallery.com Receptores Universidad Católica de Córdoba Dr Ruffino Sergio Los efectos de la dopamina están mediados a través de la interacción con los receptores del tipo D1 (D1 y D5) y D2 (D2, D3 y D4), mientras que los efectos de la noradrenalina y la adrenalina están mediados a través de los receptores alfa-adrenérgicos (a1- y a2) y a través de los receptores beta-adrenérgicos (b1 y b2). Tanto la noradrenalina como la adrenalina actúan sobre los receptores a y b.

Receptores : 

www.themegallery.com Receptores Universidad Católica de Córdoba Dr Ruffino Sergio De los receptores b, los b1-adrenérgicos, son los que predominan en el corazón y en el córtex cerebral, mientras que los receptores b2-adrenérgicos predominan en el pulmón y en el cerebelo. Se ha identificado un tercer tipo de receptor b-adrenérgico, los receptores b3 en el tejido adiposo marrón presente en roedores y en humanos recién nacidos.Entre sus efectos se destacan Vasodilatación (músculo esquelético, etc.) Cardioaceleración Aumento de la fuerza de contracción del miocardio Relajación del miometrio Relajación bronquial Relajación intestinal Glucogenólisis

Catecolaminas : 

www.themegallery.com Catecolaminas Universidad Católica de Córdoba Dr Ruffino Sergio

Catabolismo de Catecolaminas : 

www.themegallery.com Catabolismo de Catecolaminas Universidad Católica de Córdoba Dr Ruffino Sergio Tanto la dopamina como la noradrenalina se degradan por Monoaminooxida (MAO) y la cateol o- Metiltransferasa (COMT).

Serotonina : 

www.themegallery.com Serotonina Universidad Católica de Córdoba Dr Ruffino Sergio La Serotonina (5-hidroxitriptamina, o 5-HT), es una monoamina neurotransmisora sintetizada en las neuronas serotoninérgicas en el Sistema Nervioso Central (SNC) y las células enterocromafines (células de Kulchitsky 90% de sus depositos) en el tracto gastrointestinal de los animales y del ser humano. La serotonina también se encuentra en varias setas y plantas, incluyendo frutas y vegetales.

Serotonina : 

www.themegallery.com Serotonina Universidad Católica de Córdoba Dr Ruffino Sergio Como con otros transmisores amino biogénicos, la 5-HT es almacenada primariamente en vesículas y es liberada por un mecanismo exocitótico. Una vez liberada la serontonina actua a travez de sus receptores específicos. La monoaminooxidasa (MAO) convierte la serotonina en 5-hidroxi-indoleacetaldehído,y este producto es oxidado por una aldehído deshidrogenasa dependiente de NAD+ para formar ácido 5-hidroxi-indolacético (5-HIAA).

Serotonina : 

www.themegallery.com Serotonina Universidad Católica de Córdoba Dr Ruffino Sergio Estudios farmacológicos y fisiológicos han contribuido a la definición de muchos subtipos de receptores para serotonina. Receptores serotoninérgicos en el cerebro: receptor 5-HT1 (Los receptores 5-HT1 se dividieron luego en subtipos: 5-HT1A, 5-HT1B, 5-HT1C y 5-HT1D). y receptor 5-HT2. El receptor 5-HT3 está presente en nervios periféricos. Un subtipo adicional de receptor serotoninérgico ha sido descrito, el receptor 5-HT4.

Serotonina : 

www.themegallery.com Serotonina Universidad Católica de Córdoba Dr Ruffino Sergio La serotonina esta relacionada en el sueño y en estados de activación. La serotonina también parece estar implicada en la regulación de ritmos circadianos. El núcleo supraquiasmático del hipotálamo genera ciclos electrofisiológicos y metabólicos que repite aproximadamente cada 24 horas. Generalmente, este ritmo esta sincronizado al fotoperíodo del ambiente, también de alrededor de 24 horas. Los agonistas serotoninérgicos, activando receptores postsinápticos 5-HT1C y 5-HT1B, disminuyen el apetito. El papel de la serotonina (5-HT) en el SNC está completamente ligado al de la NorA, ya que interviene en la regulación de la vigilancia, en el proceso activo del sueño, la atención, en los procesos motivacionales y en la regulación de los estados de ánimo.

ACETILCOLINA : 

www.themegallery.com ACETILCOLINA Universidad Católica de Córdoba Dr Ruffino Sergio La acetilcolina (ACh) es el neurotransmisor específico en las sinapsis del sistema nervioso somático (SNS) y en las sinapsis ganglionares del sistema nervioso autónomo (SNA), así como en los órganos diana de la división parasimpática

ACETILCOLINA : 

www.themegallery.com ACETILCOLINA Universidad Católica de Córdoba Dr Ruffino Sergio Su síntesis se realiza en el botón terminal mediante la utilización de dos sustancias precursoras, el acetato y la colina; si bien la síntesis exige la incorporación del acetato a la colina y la intervención del sistema enzimático acetil-colina-transferasa (ChAT), que a su vez necesita la presencia de la coenzima-A para transferir el acetato

ACETILCOLINA : 

www.themegallery.com ACETILCOLINA Universidad Católica de Córdoba Dr Ruffino Sergio En cuanto a la organización del sistema nervioso colinérgico, la subtipificación de los receptores en este sistema se basó inicialmente en la actividad farmacológica de dos alcaloides: nicotina y muscarina. Así encontramos los receptores muscarínicos (M) y los receptores nicotínicos (N). En cuanto a su degradación, el sistema enzimático imprescindible para la catabolización, es la intervención de la acetilcolinesterasa (AChE) postsináptica, que se une específicamente a la acetilcolina y la rompe en dos moléculas, liberando los propios precursores de su síntesis, es decir, el acetato y la colina.

Receptor Muscarínico : 

www.themegallery.com Receptor Muscarínico Universidad Católica de Córdoba Dr Ruffino Sergio Abundante en el SNC y el músculo liso. La muscarina es agonista y la atropina es antagonista. Acoplado a la traducción de señales y la unión de proteína G Aumenta los niveles de cAMP y fosforilación de proteínas. Su respuesta es lenta

Receptor Nicotinico : 

www.themegallery.com Receptor Nicotinico Universidad Católica de Córdoba Dr Ruffino Sergio Unión neuromuscular y ganglios parasimpáticos La nicotina es agonista y el curare es antagonista Esta asociado al canal de Na+ Su respuesta es rápida Muchos fármacos se unen al canal/receptor y se aplican como anestésicos locales

Histamina : 

www.themegallery.com Histamina Universidad Católica de Córdoba Dr Ruffino Sergio La Histamina es una amina biológica involucrada en respuestas inmunes locales; también regula funciones fisiológicas en el estómago y actúa como neurotransmisor. El sitio principal de depósito de la histamina en casi todos los tejidos es la célula cebada, y en la sangre el basófilo; que sintetizan histamina y la depositan en sus gránulos secretores.

Histamina : 

www.themegallery.com Histamina Universidad Católica de Córdoba Dr Ruffino Sergio Se han identificado tres clases de receptores diferentes llamados H1, H2 y H3. Receptores H1 y H2 Cuando se libera Histamina, ella actúa de manera local o general a nivel de la musculatura lisa y glándulas. Contrae el músculo liso ubicado en bronquios e intestinos, pero relaja otras fibras lisas como las que están en los vasos sanguíneos lisos. La histamina también estimula la secreción de ácido a nivel gástrico. En menor intensidad estimula las terminaciones nerviosas sensoriales y la formación del edema. El receptor H1 estimula la broncoconstricción y la contracción intestinal. Los receptores H2 estimula la secreción gástrica. La vasodilatación en los vasos sanguineos finos es mediada por los receptores H1 y H2.

Histamina : 

www.themegallery.com Histamina Universidad Católica de Córdoba Dr Ruffino Sergio Receptores H3 Los receptores H3 se expresan predominantemente en el SNC, particularmente en los Ganglios basales, hipocampo y corteza. Ellos actúan como autoreceptores en las neuronas histaminergicas en donde regulan la liberación de histamina y modulan la de otros neurotransmisores.

Histamina : 

www.themegallery.com Histamina Universidad Católica de Córdoba Dr Ruffino Sergio La histamina desempeña actividades fisiológicas importantes. Dado que es uno de los mediadores preformados almacenados en la célula cebada, su liberación como consecuencia de la interacción del antígeno con los anticuerpos IgE en la superficie de dicha célula interviene decisivamente en las respuestas de hipersensibilidad inmediata y alérgicas. La histamina interviene de manera importante en la regulación de la secreción de ácido gástrico y se ha identificado su función como neurotransmisor en el sistema nervioso central. La estimulación de los receptores IgE además de activar la fosfolipasa C y la hidrólisis de los fosfolípidos de inositol, también activa a la fosfolipasa A2, lo cual hace que surjan muy diversos mediadores que incluyen el factor activador de plaquetas (PAF) y metabolitos del ácido araquidónico.

Slide 52: 

www.themegallery.com Gracias

authorStream Live Help