### Impact:

Arithmetic Sequences and Series ### Default Design:

Arithmetic Sequences ### MathType 5.0 Equation:

An Arithmetic Sequence is defined as a sequence in which there is a common difference between consecutive terms. ### Arithmetic Sequences and Series:

Which of the following sequences are arithmetic ? Identify the common difference. YES YES YES NO NO ### PowerPoint Presentation:

The common difference is always the difference between any term and the term that proceeds that term. Common Difference = 5 ### PowerPoint Presentation:

The general form of an ARITHMETIC sequence. First Term: Second Term: Third Term: Fourth Term: Fifth Term: nth Term: ### PowerPoint Presentation:

Formula for the nth term of an ARITHMETIC sequence. If we know any three of these we ought to be able to find the fourth. ### PowerPoint Presentation:

Given: Find: IDENTIFY SOLVE ### PowerPoint Presentation:

Given: Find: What term number is -169? IDENTIFY SOLVE ### PowerPoint Presentation:

Given: IDENTIFY SOLVE Find: What’s the real question? The Difference ### PowerPoint Presentation:

Given: IDENTIFY SOLVE Find: ### PowerPoint Presentation:

Arithmetic Series ### PowerPoint Presentation:

Write the first three terms and the last two terms of the following arithmetic series. What is the sum of this series? ### PowerPoint Presentation:

Written 1st to last. Written last to 1st. What is the SUM of these terms? Add Down 71 + (-27) Each sum is the same. 50 Terms ### PowerPoint Presentation:

In General . . . ### PowerPoint Presentation:

Find the sum of the terms of this arithmetic series. ### PowerPoint Presentation:

Find the sum of the terms of this arithmetic series. What term is -5? ### PowerPoint Presentation:

Alternate formula for the sum of an Arithmetic Series. ### PowerPoint Presentation:

Find the sum of this series It is not convenient to find the last term. ### PowerPoint Presentation:

Your Turn