angulo trigonometrico

Views:
 
Category: Entertainment
     
 

Presentation Description

para 5to de secundaria

Comments

Presentation Transcript

Slide 1: 

PROFESOR: JUAN ALBERTO GOMEZ CHIPANA TRIGONOMETRIA profjuan13@gmail.com

Slide 2: 

ÁNGULO TRIGONOMÉTRICO

ÁNGULO TRIGONOMÉTRICO : 

ÁNGULO TRIGONOMÉTRICO EL ÁNGULO TRIGONOMÉTRICO SE OBTIENE GIRANDO UN RAYO ALREDEDOR DE SU ORIGEN. SENTIDO DE GIRO HORARIO SENTIDO DE GIRO ANTIHORARIO OA : LADO INICIAL ) O A B < ) < POSITIVO ) < NEGATIVO OB : LADO FINAL O: VÉRTICE

SISTEMAS DE MEDICIÓN ANGULAR : 

SISTEMAS DE MEDICIÓN ANGULAR SISTEMA SEXAGESIMAL (SISTEMA INGLÉS) GRADO : MINUTO : SEGUNDO : 1vuelta= EQUIVALENCIAS

Slide 5: 

En el sistema sexagesimal los ángulos se pueden expresar en grados ,minutos y segundos Los números B y C deben ser menores de 60 RELACIONES DE CONVERSIÓN GRADOS MINUTOS SEGUNDOS x 60 x 60 x 3600 : 60 : 60 : 3600 < < < < < < < < < < < < Para convertir de grados a minutos se multiplica por 60 Para convertir de minutos a grados se divide entre 60 Para convertir de minutos a segundos se multiplica por 60 Para convertir de segundos a minutos se divide entre 60 Para convertir de grados a segundos se multiplica por 3600 Para convertir de segundos a grados se divide entre 3600

Slide 6: 

EJEMPLO : EXPRESAR EN GRADOS SEXAGESIMALES CONCLUSIÓN: RELACIÓN ENTRE LOS NÚMEROS DE GRADOS ,MINUTOS y SEGUNDOS NÚMERO DE GRADOS SEXAGESIMALES = S NÚMERO DE MINUTOS SEXAGESIMALES ( m ) = 60S NÚMERO DE SEGUNDOS SEXAGESIMALES ( p ) = 3600S Al número 36 se le divide entre 60 y Al número 45 se le divide entre 3600

Slide 7: 

EJEMPLO Calcular la medida de un ángulo en el sistema sexagesimal , sabiendo que su número de minutos sexagesimales más el doble de su número de grados sexagesimales es igual a 155. SOLUCIÓN Sea S = número de grados sexagesimales Entonces el número de minutos sexagesimales = 60S Dato : El ángulo mide :

Slide 8: 

ESTAN ENTENDIENDO ? NO REPITE POR FAVOR

SISTEMAS DE MEDICIÓN ANGULAR SISTEMA CENTESIMAL (SISTEMA FRANCÉS) GRADO : MINUTO : SEGUNDO : 1vuelta= EQUIVALENCIAS

Slide 10: 

En el sistema centesimal los ángulos se pueden expresar en grados ,minutos y segundos Los números B y C deben ser menores de 100 RELACIONES DE CONVERSIÓN GRADOS MINUTOS SEGUNDOS x 100 x 100 x 10 000 : 100 : 100 : 10 000 < < < < < < < < < < < < Para convertir de grados a minutos se multiplica por 100 Para convertir de minutos a grados se divide entre 100 Para convertir de minutos a segundos se multiplica por 100 Para convertir de segundos a minutos se divide entre 100 Para convertir de grados a segundos se multiplica por 10000 Para convertir de segundos a grados se divide entre 10000

Slide 11: 

RELACIÓN ENTRE LOS NÚMEROS DE GRADOS ,MINUTOS y SEGUNDOS NÚMERO DE GRADOS CENTESIMALES = C NÚMERO DE MINUTOS CENTESIMALES ( n ) = 100C NÚMERO DE SEGUNDOS CENTESIMALES ( q ) = 10 000C RELACIÓN ENTRE LOS SISTEMAS SEXAGESIMAL Y CENTESIMAL GRADOS MINUTOS SEGUNDOS SABEMOS QUE SIMPLIFICANDO SE OBTIENE SABES QUE : SABES QUE :

SISTEMAS DE MEDICIÓN ANGULAR : 

SISTEMAS DE MEDICIÓN ANGULAR SISTEMA RADIAL (SISTEMA CIRCULAR) UN RADIÁN ES LA MEDIDA DEL ÁNGULO CENTRAL QUE SUBTIENDE EN CUALQUIER CIRCUNFERENCIA UN ARCO DE LONGITUD IGUAL AL RADIO. R R R ) EN ESTE SISTEMA LA UNIDAD DE MEDIDA ES EL RADIÁN.

RELACIÓN ENTRE LOS TRES SISTEMAS : 

RELACIÓN ENTRE LOS TRES SISTEMAS ESTA RELACIÓN SE USA PARA CONVERTIR DE UN SISTEMA A OTRO. EN CADA UNO DE LOS SIGUIENTES CASOS CONVERTIR A RADIANES EJEMPLOS SABES QUE EL ÁNGULO DE UNA VUELTA MIDE : SIMPLIFICANDO SE OBTIENE :

Slide 14: 

EN CADA UNO DE LOS SIGUIENTES CASOS CONVERTIR AL SISTEMA SEXAGESIMAL ........... ................. EN CADA UNO DE LOS SIGUIENTES CASOS CONVERTIR AL SISTEMA CENTESIMAL ........... ................

Slide 15: 

FACTORES DE CONVERSIÓN DE GRADOS SEXAGESIMALES A RADIANES DE GRADOS SEXAGESIMALES A CENTESIMALES DE GRADOS CENTESIMALES A RADIANES DE GRADOS CENTESIMALES A SEXAGESIMALES DE RADIANES A GRADOS SEXAGESIMALES DE RADIANES A GRADOS CENTESIMALES

Slide 16: 

ESTAN ENTENDIENDO ? NO REPITE POR FAVOR

Slide 17: 

FÓRMULA DE CONVERSIÓN S : NÚMERO DE GRADOS SEXAGESIMALES C : NÚMERO DE GRADOS CENTESIMALES R : NÚMERO DE RADIANES EJEMPLO CALCULAR EL NÚMERO DE RADIANES DE UN ÁNGULO ,SI SE CUMPLE: EN ESTE TIPO DE PROBLEMA SE DEBE USAR LA FÓRMULA DE CONVERSIÓN SOLUCIÓN

Slide 18: 

SE REEMPLAZA EN EL DATO DEL PROBLEMA ,SIMPLIFICANDO SE OBTIENE FINALMENTE EL NÚMERO DE RADIANES ES : NOTA : LA FÓRMULA DE CONVERSIÓN EN ALGUNOS CASOS CONVIENE EXPRESARLA DE LA SIGUIENTE MANERA

Slide 19: 

OTRAS RELACIONES IMPORTANTES * ÁNGULOS COMPLEMENTARIOS SUMAN : * ÁNGULOS SUPLEMENTARIOS SUMAN : * EQUIVALENCIAS USUALES: SISTEMA SEXAGESIMAL CENTESIMAL RADIAL COMPLEMENTO SUPLEMENTO S C R 90 - S 180 - S 100 - C 200 - C

Slide 20: 

EJERCICIOS 1. CALCULAR : SOLUCIÓN Para resolver este ejercicio la idea es convertir cada uno de los valores dados a un solo sistema ,elegimos el SISTEMA SEXAGESIMAL ; Reemplazamos en E

Slide 21: 

2. El número de grados sexagesimales de un ángulo más el triple de su número de grados centesimales es 78, calcular su número de radianes SOLUCIÓN Sea S = número de grados sexagesimales C = número de grados centesimales Sabes que : = K y Dato : S + 3C = 78 S = 9K C = 10K 9K + 3( 10K ) = 78 39K = 78 K = 2 El número de radianes es :

Slide 22: 

3. Determinar si es verdadero o falso A ) B ) El complemento de es C ) D ) Los ángulos interiores de un triángulo suman E ) F ) G ) El número de grados sexagesimales de un ángulo es igual al 90% de su número de grados centesimales

Slide 23: 

TRIGONOMETRIA profjuan13@gmail.com