# Digital Fundamentals 10th_ch 2

Views:

Category: Education

## Presentation Description

Digital Fundamentals 10th

By: aircelm (64 month(s) ago)

By: mr_el_masry (63 month(s) ago)

## Presentation Transcript

### PowerPoint Presentation:

Digital Fundamentals Tenth Edition Floyd Chapter 2 © 2008 Pearson Education

### PowerPoint Presentation:

The position of each digit in a weighted number system is assigned a weight based on the base or radix of the system. The radix of decimal numbers is ten, because only ten symbols (0 through 9) are used to represent any number. Summary The column weights of decimal numbers are powers of ten that increase from right to left beginning with 10 0 =1: Decimal Numbers …10 5 10 4 10 3 10 2 10 1 10 0 . For fractional decimal numbers, the column weights are negative powers of ten that decrease from left to right: 10 2 10 1 10 0 . 10 -1 10 -2 10 -3 10 -4 …

### PowerPoint Presentation:

Summary Decimal Numbers Express the number 480.52 as the sum of values of each digit. Example Solution      (9 x 10 3 ) + (2 x 10 2 ) + (4 x  10 1 ) + (0 x 10 0 ) or 9 x 1,000 + 2 x 100 + 4 x 10 + 0 x 1 Decimal numbers can be expressed as the sum of the products of each digit times the column value for that digit. Thus, the number 9240 can be expressed as 480.52 = (4 x 10 2 ) + (8 x 10 1 ) + (0 x 10 0 ) + (5 x 10 -1 ) +(2 x 10 -2 )

### PowerPoint Presentation:

Summary Binary Numbers For digital systems, the binary number system is used. Binary has a radix of two and uses the digits 0 and 1 to represent quantities. The column weights of binary numbers are powers of two that increase from right to left beginning with 2 0 =1: …2 5 2 4 2 3 2 2 2 1 2 0 . For fractional binary numbers, the column weights are negative powers of two that decrease from left to right: 2 2 2 1 2 0 . 2 -1 2 -2 2 -3 2 -4 …

### PowerPoint Presentation:

Summary Binary Numbers A binary counting sequence for numbers from zero to fifteen is shown. 0 0 0 0 0 1 0 0 0 1 2 0 0 1 0 3 0 0 1 1 4 0 1 0 0 5 0 1 0 1 6 0 1 1 0 7 0 1 1 1 8 1 0 0 0 9 1 0 0 1 10 1 0 1 0 11 1 0 1 1 12 1 1 0 0 13 1 1 0 1 14 1 1 1 0 15 1 1 1 1 Decimal Number Binary Number Notice the pattern of zeros and ones in each column. Digital counters frequently have this same pattern of digits:

### PowerPoint Presentation:

Summary Binary Conversions The decimal equivalent of a binary number can be determined by adding the column values of all of the bits that are 1 and discarding all of the bits that are 0. Convert the binary number 100101.01 to decimal. Example Solution Start by writing the column weights; then add the weights that correspond to each 1 in the number. 2 5 2 4 2 3 2 2 2 1 2 0 . 2 -1 2 -2 32 16 8 4 2 1 . ½ ¼ 1 0 0 1 0 1. 0 1 32 +4 +1 +¼ = 37¼

### PowerPoint Presentation:

Summary Binary Conversions You can convert a decimal whole number to binary by reversing the procedure. Write the decimal weight of each column and place 1’s in the columns that sum to the decimal number. Convert the decimal number 49 to binary. Example Solution The column weights double in each position to the right. Write down column weights until the last number is larger than the one you want to convert. 2 6 2 5 2 4 2 3 2 2 2 1 2 0 . 64 32 16 8 4 2 1. 0 1 1 0 0 0 1.

### PowerPoint Presentation:

Summary You can convert a decimal fraction to binary by repeatedly multiplying the fractional results of successive multiplications by 2. The carries form the binary number. Convert the decimal fraction 0.188 to binary by repeatedly multiplying the fractional results by 2. Example Solution 0.188 x 2 = 0 . 376 carry = 0 0. 376 x 2 = 0 . 752 carry = 0 0. 752 x 2 = 1 . 504 carry = 1 0. 504 x 2 = 1 . 008 carry = 1 0. 008 x 2 = 0 . 016 carry = 0 Answer = .00110 (for five significant digits) MSB Binary Conversions

### PowerPoint Presentation:

1 0 0 1 1 0 Summary You can convert decimal to any other base by repeatedly dividing by the base. For binary, repeatedly divide by 2: Convert the decimal number 49 to binary by repeatedly dividing by 2. Example Solution You can do this by “reverse division” and the answer will read from left to right. Put quotients to the left and remainders on top. 49 2 Decimal number base 24 remainder Quotient 12 6 3 1 0 Continue until the last quotient is 0 Answer: Binary Conversions

### PowerPoint Presentation:

Summary Binary Addition The rules for binary addition are 0 + 0 = 0 Sum = 0, carry = 0 0 + 1 = 0 Sum = 1, carry = 0 1 + 0 = 0 Sum = 1, carry = 0 1 + 1 = 10 Sum = 0, carry = 1 When an input carry = 1 due to a previous result, the rules are 1 + 0 + 0 = 01 Sum = 1, carry = 0 1 + 0 + 1 = 10 Sum = 0, carry = 1 1 + 1 + 0 = 10 Sum = 0, carry = 1 1 + 1 + 1 = 10 Sum = 1, carry = 1

### PowerPoint Presentation:

Summary Binary Addition Add the binary numbers 00111 and 10101 and show the equivalent decimal addition. Example Solution 00111 7 10101 21 0 1 0 1 1 1 1 0 1 28 =

### PowerPoint Presentation:

Summary Binary Subtraction The rules for binary subtraction are 0 - 0 = 0 1 - 1 = 0 1 - 0 = 1 10 - 1 = 1 with a borrow of 1 Subtract the binary number 00111 from 10101 and show the equivalent decimal subtraction. Example Solution 00111 7 10101 21 0 / 1 1 1 1 0 14 / 1 / 1 =

### PowerPoint Presentation:

Summary 1’s Complement The 1’s complement of a binary number is just the inverse of the digits. To form the 1’s complement, change all 0’s to 1’s and all 1’s to 0’s. For example, the 1’s complement of 11001010 is 00110101 In digital circuits, the 1’s complement is formed by using inverters: 1 1 0 0 1 0 1 0 0 0 1 1 0 1 0 1

### PowerPoint Presentation:

Summary 2’s Complement The 2’s complement of a binary number is found by adding 1 to the LSB of the 1’s complement. Recall that the 1’s complement of 11001010 is 00110101 (1’s complement) To form the 2’s complement, add 1: +1 00110110 (2’s complement) 1 1 0 0 1 0 1 0 0 0 1 1 0 1 0 1 1 0 0 1 1 0 1 1 0

### PowerPoint Presentation:

Summary Signed Binary Numbers There are several ways to represent signed binary numbers. In all cases, the MSB in a signed number is the sign bit, that tells you if the number is positive or negative. Computers use a modified 2’s complement for signed numbers. Positive numbers are stored in true form (with a 0 for the sign bit) and negative numbers are stored in complement form (with a 1 for the sign bit). For example, the positive number 58 is written using 8-bits as 0 0111010 (true form). Sign bit Magnitude bits

### PowerPoint Presentation:

Summary Signed Binary Numbers Assuming that the sign bit = - 128, show that 11000110 = - 58 as a 2’s complement signed number: Example Solution 1 1 0 0 0 1 1 0 Column weights: - 128 64 32 16 8 4 2 1 . - 128 +64 +4 +2 = - 58 Negative numbers are written as the 2’s complement of the corresponding positive number. - 58 = 1 1000110 (complement form) Sign bit Magnitude bits An easy way to read a signed number that uses this notation is to assign the sign bit a column weight of - 128 (for an 8-bit number). Then add the column weights for the 1’s. The negative number - 58 is written as:

### PowerPoint Presentation:

Summary Floating Point Numbers Express the speed of light, c , in single precision floating point notation. ( c = 0.2998 x 10 9 ) Example Solution Floating point notation is capable of representing very large or small numbers by using a form of scientific notation. A 32-bit single precision number is illustrated. S E (8 bits) F (23 bits) Sign bit Magnitude with MSB dropped Biased exponent (+127) In scientific notation, c = 1 .001 1101 1110 1001 0101 1100 0000 x 2 28 . 0 10011011 001 1101 1110 1001 0101 1100 In binary, c = 0001 0001 1101 1110 1001 0101 1100 0000 2 . S = 0 because the number is positive. E = 28 + 127 = 155 10 = 1001 1011 2 . F is the next 23 bits after the first 1 is dropped. In floating point notation, c =

### PowerPoint Presentation:

Summary Arithmetic Operations with Signed Numbers Using the signed number notation with negative numbers in 2’s complement form simplifies addition and subtraction of signed numbers. Rules for addition : Add the two signed numbers. Discard any final carries. The result is in signed form. Examples: 00011110 = +30 00001111 = +15 00101101 = +45 00001110 = +14 11101111 = - 17 11111101 = - 3 11111111 = - 1 11111000 = - 8 11110111 = - 9 1 Discard carry

### PowerPoint Presentation:

Summary Arithmetic Operations with Signed Numbers 01000000 = +128 01000001 = +129 10000001 = - 126 10000001 = - 127 10000001 = - 127 100000010 = +2 Note that if the number of bits required for the answer is exceeded, overflow will occur. This occurs only if both numbers have the same sign. The overflow will be indicated by an incorrect sign bit. Two examples are: Wrong! The answer is incorrect and the sign bit has changed. Discard carry

### PowerPoint Presentation:

Summary Arithmetic Operations with Signed Numbers Rules for subtraction : 2’s complement the subtrahend and add the numbers. Discard any final carries. The result is in signed form. 00001111 = +15 1 Discard carry 2’s complement subtrahend and add: 00011110 = +30 11110001 = - 15 Repeat the examples done previously, but subtract: 00011110 00001111 - 00001110 11101111 11111111 11111000 - - 00011111 = +31 00001110 = +14 00010001 = +17 00000111 = +7 1 Discard carry 11111111 = - 1 00001000 = + 8 (+30) –(+15) (+14) –( - 17) ( - 1) –( - 8)

### PowerPoint Presentation:

Summary Hexadecimal Numbers Hexadecimal uses sixteen characters to represent numbers: the numbers 0 through 9 and the alphabetic characters A through F. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 1415 0 1 2 3 4 5 6 7 8 9 A B C D E F 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 Decimal Hexadecimal Binary Large binary number can easily be converted to hexadecimal by grouping bits 4 at a time and writing the equivalent hexadecimal character. Express 1001 0110 0000 1110 2 in hexadecimal: Example Solution Group the binary number by 4-bits starting from the right. Thus, 960E

### PowerPoint Presentation:

Summary Hexadecimal Numbers Hexadecimal is a weighted number system. The column weights are powers of 16, which increase from right to left. . 1 A 2 F 16 6703 10 Column weights 16 3 16 2 16 1 16 0 4096 256 16 1 . { Express 1A2F 16 in decimal. Example Solution Start by writing the column weights: 4096 256 16 1 1(4096) + 10(256) +2(16) +15(1) = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 1415 0 1 2 3 4 5 6 7 8 9 A B C D E F 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 Decimal Hexadecimal Binary

### PowerPoint Presentation:

Summary Octal Numbers Octal uses eight characters the numbers 0 through 7 to represent numbers. There is no 8 or 9 character in octal. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 1415 0 1 2 3 4 5 6 7 10 1112 13 14 15 16 17 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 Decimal Octal Binary Binary number can easily be converted to octal by grouping bits 3 at a time and writing the equivalent octal character for each group. Express 1 001 011 000 001 110 2 in octal: Example Solution Group the binary number by 3-bits starting from the right. Thus, 113016 8

### PowerPoint Presentation:

Summary Octal Numbers Octal is also a weighted number system. The column weights are powers of 8, which increase from right to left. . 3 7 0 2 8 1986 10 Column weights 8 3 8 2 8 1 8 0 512 64 8 1 . { Express 3702 8 in decimal. Example Solution Start by writing the column weights: 512 64 8 1 3(512) + 7(64) +0(8) +2(1) = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 1415 0 1 2 3 4 5 6 7 10 1112 13 14 15 16 17 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 Decimal Octal Binary

### PowerPoint Presentation:

Summary BCD Binary coded decimal (BCD) is a weighted code that is commonly used in digital systems when it is necessary to show decimal numbers such as in clock displays. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 1415 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 Decimal Binary BCD 0001 0001 0001 0001 0001 0001 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 0000 0001 0010 0011 0100 0101 The table illustrates the difference between straight binary and BCD. BCD represents each decimal digit with a 4-bit code. Notice that the codes 1010 through 1111 are not used in BCD.

### PowerPoint Presentation:

Summary BCD You can think of BCD in terms of column weights in groups of four bits. For an 8-bit BCD number, the column weights are: 80 40 20 10 8 4 2 1. Question: What are the column weights for the BCD number 1000 0011 0101 1001 ? Answer: 8000 4000 2000 1000 800 400 200 100 80 40 20 10 8 4 2 1 Note that you could add the column weights where there is a 1 to obtain the decimal number. For this case: 8000 + 200 + 100 + 40 + 10 + 8 + 1 = 8 3 5 9 10

### PowerPoint Presentation:

Summary BCD A lab experiment in which BCD is converted to decimal is shown.

### PowerPoint Presentation:

Summary Gray code Gray code is an unweighted code that has a single bit change between one code word and the next in a sequence. Gray code is used to avoid problems in systems where an error can occur if more than one bit changes at a time. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 1415 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 Decimal Binary Gray code 0000 0001 0011 0010 0110 0111 0101 0100 1100 1101 1111 1110 1010 1011 1001 1000

### PowerPoint Presentation:

Summary Gray code A shaft encoder is a typical application. Three IR emitter/detectors are used to encode the position of the shaft. The encoder on the left uses binary and can have three bits change together, creating a potential error. The encoder on the right uses gray code and only 1-bit changes, eliminating potential errors. Binary sequence Gray code sequence

### PowerPoint Presentation:

Summary ASCII ASCII is a code for alphanumeric characters and control characters. In its original form, ASCII encoded 128 characters and symbols using 7-bits. The first 32 characters are control characters, that are based on obsolete teletype requirements, so these characters are generally assigned to other functions in modern usage. In 1981, IBM introduced extended ASCII, which is an 8-bit code and increased the character set to 256. Other extended sets (such as Unicode) have been introduced to handle characters in languages other than English.

### PowerPoint Presentation:

Summary Parity Method The parity method is a method of error detection for simple transmission errors involving one bit (or an odd number of bits). A parity bit is an “extra” bit attached to a group of bits to force the number of 1’s to be either even (even parity) or odd (odd parity). The ASCII character for “a” is 1100001 and for “A” is 1000001. What is the correct bit to append to make both of these have odd parity? Example Solution The ASCII “a” has an odd number of bits that are equal to 1; therefore the parity bit is 0 . The ASCII “A” has an even number of bits that are equal to 1; therefore the parity bit is 1 .

### PowerPoint Presentation:

Summary Cyclic Redundancy Check The cyclic redundancy check (CRC) is an error detection method that can detect multiple errors in larger blocks of data. At the sending end, a checksum is appended to a block of data. At the receiving end, the check sum is generated and compared to the sent checksum. If the check sums are the same, no error is detected.

### PowerPoint Presentation:

Selected Key Terms Byte Floating-point number Hexadecimal Octal BCD A group of eight bits A number representation based on scientific notation in which the number consists of an exponent and a mantissa. A number system with a base of 16. A number system with a base of 8. Binary coded decimal; a digital code in which each of the decimal digits, 0 through 9, is represented by a group of four bits.

### PowerPoint Presentation:

Selected Key Terms Alphanumeric ASCII Parity Cyclic redundancy check (CRC) Consisting of numerals, letters, and other characters American Standard Code for Information Interchange; the most widely used alphanumeric code. In relation to binary codes, the condition of evenness or oddness in the number of 1s in a code group. A type of error detection code.

### PowerPoint Presentation:

1. For the binary number 1000, the weight of the column with the 1 is a. 4 b. 6 c. 8 d. 10 © 2008 Pearson Education Quiz

### PowerPoint Presentation:

2. The 2’s complement of 1000 is a. 0111 b. 1000 c. 1001 d. 1010 © 2008 Pearson Education Quiz

### PowerPoint Presentation:

3. The fractional binary number 0.11 has a decimal value of a. ¼ b. ½ c. ¾ d. none of the above © 2008 Pearson Education Quiz

### PowerPoint Presentation:

4. The hexadecimal number 2C has a decimal equivalent value of a. 14 b. 44 c. 64 d. none of the above © 2008 Pearson Education Quiz

### PowerPoint Presentation:

5. Assume that a floating point number is represented in binary. If the sign bit is 1, the a. number is negative b. number is positive c. exponent is negative d. exponent is positive © 2008 Pearson Education Quiz

### PowerPoint Presentation:

6. When two positive signed numbers are added, the result may be larger that the size of the original numbers, creating overflow. This condition is indicated by a. a change in the sign bit b. a carry out of the sign position c. a zero result d. smoke © 2008 Pearson Education Quiz

### PowerPoint Presentation:

7. The number 1010 in BCD is a. equal to decimal eight b. equal to decimal ten c. equal to decimal twelve d. invalid © 2008 Pearson Education Quiz

### PowerPoint Presentation:

8. An example of an unweighted code is a. binary b. decimal c. BCD d. Gray code © 2008 Pearson Education Quiz

### PowerPoint Presentation:

9. An example of an alphanumeric code is a. hexadecimal b. ASCII c. BCD d. CRC © 2008 Pearson Education Quiz

### PowerPoint Presentation:

10. An example of an error detection method for transmitted data is the a. parity check b. CRC c. both of the above d. none of the above © 2008 Pearson Education Quiz

### PowerPoint Presentation:

Answers: 1. c 2. b 3. c 4. b 5. a 6. a 7. d 8. d 9. b 10. c Quiz