enzimas

Views:
 
Category: Entertainment
     
 

Presentation Description

No description available.

Comments

Presentation Transcript

ENZIMAS:

ENZIMAS

Las enzimas son proteínas:

Las enzimas son proteínas Catalizan reacciones químicas necesarias para la sobrevivencia celular Sin las enzimas los procesos biológicos serían tan lentos que las células no podrían existir. Las enzimas pueden actuar dentro de la célula , fuera de ésta, y en el tubo de ensayo. E + S  ESEP  E + P E E E E

La enzima disminuye la energía de activación:

La enzima disminuye la energía de activación Tiempo de la reacción E + S E + P Sin enzima Con enzima La Ea de la hidrólisis de la urea baja de 30 a 11 kcal/mol con la acción de las enzimas, acelerando la reacción 10 14 x El aumento de temperatura necesario para producir la reacción no catalizada seria de 529ºC

Enzima - Catalizador:

Enzima - Catalizador Tanto la enzima como el catalizador aceleran la velocidad de una reacción química. Una enzima puede transformar 1000 moléculas de sustrato/ segundo Las enzimas tienen 3 propiedades que los catalizadores NO tienen Especificidad por el sustrato Se inactivan por desnaturación Pueden ser reguladas

PowerPoint Presentation:

Las enzimas se unen a los reactivos (sustratos) reduciendo la energía de activación Cada enzima tiene una forma única con un sitio o centro activo en el que se une al sustrato Después de la reacción, enzimas y productos se separan. Las moléculas enzimáticas no han cambiado después de participar en la reacción

PowerPoint Presentation:

Las enzimas cumplen su papel catalítico gracias a: Fijación estereoquímicamente complementaria del substrato Transformación catalítica del mismo En ambas funciones participan: Cadenas laterales de los aminoácidos Grupos o moléculas no proteicas: Grupos prostéticos Iones metálicos Cofactores

PowerPoint Presentation:

Los siguientes hechos: Especificidad de la reacción enzimática Carácter heterogéneo de la catálisis enzimática Nos llevan a postular la existencia de un Centro Activo en la molécula de enzima, capaz de: Fijar específicamente al substrato Transformarlo catalíticamente.

PowerPoint Presentation:

Enzima Sitio activo Sustrato

La unión del sustrato es muy específica:

Complementariedad geométrica Complementariedad de cargas, uniones iónicas Modelos: Encaje inducido Llave – cerradura. Estado de transición La unión del sustrato es muy específica

PowerPoint Presentation:

Teorías de la acción enzimática, 1 Modelo de Llave y Cerradura (Emil Fischer) Substrato y enzima se acoplan de forma estereospecífica, de la misma manera que una llave se ajusta a su cerradura. Modelo aceptado durante mucho tiempo; hoy se considera insuficiente al no explicar algunos fenómenos de la inhibición enzimática

PowerPoint Presentation:

Teorías de la acción enzimática, 2 Modelo de Ajuste Inducido (Koshland) Tanto la enzima como el substrato sufren una alteración en su estructura por el hecho físico de la unión. Está mucho más de acuerdo con todos los datos experimentales conocidos hasta el momento.

PowerPoint Presentation:

Teorías de la acción enzimática, 3 La teoría del Ajuste Inducido se amplía en la actualidad definiendo la acción enzimática como Estabilización del Estado de Transición Según lo cual, el Centro Activo enzimático es en realidad complementario no al substrato o al producto, sino al estado de transición entre ambos.

Una enzima puede unir dos sustratos en su sitio activo:

Una enzima puede unir dos sustratos en su sitio activo

PowerPoint Presentation:

Clasificación y nomenclatura de enzimas

PowerPoint Presentation:

EC 2.7.1.1 Número Enzyme Commission : E nzyme C omission Grupo Subgrupo Nombre común (sustrato+”asa”): Hexokinasa Clasificación y nomenclatura ATP: hexosa fosfo transferasa Nombre sistemático: Donador Aceptor Grupo transferido Tipo de reacción catalizada Grupos químicos Enzimas

PowerPoint Presentation:

EC 1.x  Oxidorreductasas EC 2.x  Transferasas EC 3.x  Hidrolasas EC 4.x  Liasas EC 5.x  Isomerasas EC 6.x  Ligasas Clasificación de enzimas por Grupos Clasificación y nomenclatura

PowerPoint Presentation:

Grupo 1: Oxidorreductasas Catalizan reacciones de oxidorreducción , en que átomos de oxigeno ó hidrogeno son trasladados entre moléculas: En las reacciones redox, siempre tienen que estar presentes a la vez el aceptor y el dador electrónico. AH 2 + B A + BH 2 Clasificación y nomenclatura A red + B ox A ox + B red

PowerPoint Presentation:

Nombre : Dador:Aceptor oxidorreductasa Nombre común: Glucosa oxidasa b -D-Glucosa : O 2 1-oxidorreductasa Dador Aceptor EC 1.1.3.4 Clasificación y nomenclatura Grupo 1: Oxidorreductasas

PowerPoint Presentation:

Nomenclatura del subgrupo en oxidorreductasas: EC 1.1.x - Deshidrogenasas EC 1.2.x - Oxidasas EC 1.3.x - Peroxidasas EC 1.4.x - Oxigenasas EC 1.5.x - Hidroxilasas EC 1.6.x - Reductasas etc. Clasificación y nomenclatura Grupo 1: Oxidorreductasas Aplicaciones: Ensayos de diagnostico clínico (glucosa oxidasa y colesterol oxidasa Deslignificación ó Bioblanqueamiento

PowerPoint Presentation:

A-X + B A + B-X Grupo 2: Transferasas Catalizan reacciones de transferencia de átomos ó grupo de átomos entre moléculas: Dador: Aceptor Grupo transferido - transferasa ATP: D-Hexosa Fosfotransferasa EC 2.7.1.1 Nombre común: hexokinasa Clasificación y nomenclatura

PowerPoint Presentation:

Clasificación de subgrupo de las transferasas: EC 2.1.x - Grupos monocarbonados EC 2.2.x - Grupos aldehido o ceto EC 2.3.x - Aciltransferasas EC 2.4.x - Glicosiltransferasas EC 2.5.x - Alquil- o Ariltransferasas EC 2.6.x - Grupos nitrogenados EC 2.7.x - Grupos fosfato EC 2.8.x - Grupos sulfato EC 2.9.x - Grupos selenio Clasificación y nomenclatura Grupo 2: Transferasas Aplicaciones: Síntesis de oligosacáridos

PowerPoint Presentation:

Grupo 3: Hidrolasas Catalizan reacciones de hidrólisis y también su reverso. Son las más comunes en el dominio de la tecnología enzimática: A-B + H 2 O A-OH + H-B No se suelen utilizar nombres sistemáticos en las hidrolasas. Muchas de ellas conservan el nombre Primitivo. Ejemplo: Quimosina EC 3.4.23.4. Clasificación y nomenclatura

PowerPoint Presentation:

Clasificación de las hidrolasas: 3.1.-.- Esterasas (carboxilesterasas, fosfoesterasas, sulfoesterasas) 3.2.-.- Glicosidasas 3.3.-.- Éter hidrolasas 3.4.-.- Péptido hidrolasas 3.5.-.- Acil anhídrido hidrolasas etc. Grupo 3: Hidrolasas Clasificación y nomenclatura Aplicaciones: Lipasas → Síntesis de tensioactivos Proteasas → Fabrico de quesos Glicosidasas → Clarificación de jugos; liberación de aromas en los vinos; aplicaciones textiles

PowerPoint Presentation:

Caso particular  Péptido hidrolasas: clasificación común (no sistemática) I. Según la situación del enlace atacado: - Exopeptidasas (extremos de la cadena) (Peptidasas) - Endopeptidasas (interior de la cadena) (Proteinasas) II. Según el mecanismo catalítico: - Serin proteinasas - Tiol proteinasas - Aspartil proteinasas - Metaloproteinasas Grupo 3: Hidrolasas Clasificación y nomenclatura

PowerPoint Presentation:

Grupo 4: Liasas Catalizan reacciones reversibles de remoción de grupo de átomos del sustrato (este grupo no incluye las hidrolasas): A-B A + B Clasificación y nomenclatura Ejemplo Nombre sistemático: Histidina amonio-liasa (EC 4.3.1.3) Nombre común: Histidasa

PowerPoint Presentation:

Clasificación de las liasas: 4.1.x - Actúan sobre enlaces C-C 4.2.x - Actúan sobre enlaces C-O 4.3.x - Actúan sobre enlaces C-N 4.4.x - Actúan sobre enlaces C-S 4.5.x - Actúan sobre enlaces C-Haluro (S - , Cl - , Br - , I - At - ) 4.6.x - Actúan sobre enlaces P-O 4.99.x - Otras liases Clasificación y nomenclatura Aplicaciones: Pectato liasa – Remueve los compuestos indeseables (ceras, pectinas, proteínas) en fibras en la industria textil – “ bioscouring ” Grupo 4: Liasas

PowerPoint Presentation:

Grupo 5: Isomerasas Catalizan reacciones de isomerización moleculares Clasificación y nomenclatura A B Ejemplo: Glucosa isomerasa (EC 5.3.1.5)

PowerPoint Presentation:

5.1.x - Rasemasas y Epimerasas 5.2.x - cis-Trans-Isomerasas 5.3.x - Oxidoreductasas Intramolecular 5.4.x - Transferasas Intramoleculares (mutases) 5.5.x - Liasas Intramoleculares 5.99.x - Otras Isomerasas Grupo 5: Isomerasas Clasificación y nomenclatura Clasificación de las isomerasas:

PowerPoint Presentation:

Grupo 6: Ligasas Catalizan la unión de dos grupos químicos a expensas de la hidrólisis de un nucleótido trifosfato (ATP, GTP, etc.). A + B + ATP A-B + ADP + P i Clasificación y nomenclatura Ejemplo: Glutationa sintasa (EC 6.2.2.3) Nombre sistémico: G-L-glutamilo-L-cisteina:glicina ligase

PowerPoint Presentation:

Grupo 6: Ligasas Clasificación y nomenclatura Clasificación de las ligasas: 6.1.x - Forman enlaces C-O 6.2.x - Forman enlaces C-S 6.3.x - Forman enlaces C-N 6.4.x - Forman enlaces C-C 6.5.x - Forman enlaces ésteres fosfóricos 6.6.x - Actúan sobre enlaces N-metal

PowerPoint Presentation:

Cinética Enzimática

PowerPoint Presentation:

Cinética Enzimática La cinética enzimática es el análisis cuantitativo del efecto de cada uno de los factores que intervienen en la actividad enzimática , que se evalúa a través de la velocidad de la reacción catalizada . Las variables más importantes son: Concentración de enzima, sustratos y productos (incluyendo inhibidores y/o activadores) pH Temperatura

PowerPoint Presentation:

Ella está basada en la medición de la velocidad de reacción. Así en la reacción: Se tendrá: Como se observa en la figura, la velocidad de reacción (pendiente) disminuye continuamente a partir de un valor máximo inicial. Esto se puede deber a: Desaturación de la enzima con sustrato, por disminución de la concentración del sustrato Inactivación de la enzima por su inherente inestabilidad Inhibición por el producto Desplazamiento del equilibrio, si la reacción es reversible E S P

PowerPoint Presentation:

Baja concentración de sustrato ALTA concentración de sustrato SATURACION

PowerPoint Presentation:

v [s] Efecto de la concentración de substrato . . . . . . . .

PowerPoint Presentation:

dt t s p [ ] Concepto de velocidad inicial d[P] v = , t 0

PowerPoint Presentation:

E + S ES E + P k +1 k -1 k +2 Una cinética hiperbólica implica un proceso saturante : Hay un número limitado de sitios en la enzima para fijar substrato; una vez que están ocupados todos, por mucho que aumente la concentración de substrato, la velocidad permanecerá constante tendiendo a un valor asintótico

PowerPoint Presentation:

El sistema de ecuaciones diferenciales que describe la dinámica del sistema E + S ES E + P k +1 k -1 k +2 Sistema No admite solución analítica. - Simulaciones numéricas - Hipótesis que lo simplifiquen

PowerPoint Presentation:

Hipótesis de Michaelis - Menten E + S ES E + P k +1 k -1 k +2 - La primera parte del mecanismo, E + S ES k +1 k -1 Tiene lugar mucho más rápidamente que la segunda: ES E + P k +2

PowerPoint Presentation:

Hipótesis de Michaelis-Menten Equilibrio rápido

PowerPoint Presentation:

Hipótesis de estado estacionario Según veíamos en la simulación numérica, hay un tiempo relativamente prolongado en el curso de la reacción en el que la variación de complejo [ES] es prácticamente igual a cero: dx/dt = k +1 es - (k -1 + k +2 ) x = 0 A partir de esta expresión podemos llegar a obtener una expresión que nos da la velocidad para la concentración de substrato

PowerPoint Presentation:

Hipótesis de estado estacionario

PowerPoint Presentation:

A partir de las suposiciones de Michaelis-Menten y Estado estacionario, llegamos a la ecuación K m + s v = V max * s La única diferencia radica en el significado de K m : K m = k -1 /k +1 en mecanismo de M.M. K m = (k -1 + k +2 )/k +1 en mecanismo de E.E.

PowerPoint Presentation:

Significado de la constante K m 1. Constante de equilibrio de disociación del complejo ES (en condiciones de equilibrio rápido) 2. Medida inversa de la afinidad de la enzima por el substrato (en condiciones de equilibrio rápido) 3. Mide la función de fijación (en cond.de equilibrio rápido) 4. Concentración de substrato para la que la velocidad se hace igual a la mitad de la máxima (s 0.5 ) 5. Se define para una pareja enzima-substrato 6. Se mide en unidades de concentración

PowerPoint Presentation:

Significado de la constante V max = k +2 e 0 1. Velocidad asintótica para s 2. Directamente proporcional a la concentración de enzima (hoy se prefiere caracterizar a la enzima por k +2 ) 3. Mide función de transformación catalítica 4. Se expresa en unidades de velocidad

Relación entre Km y Vmax Michaelis y Menten:

Relación entre Km y Vmax Michaelis y Menten Concentración de Sustrato [S] Velocidad de la reacción (v) Km Vmax Vmax/2 La Km es la concentración de sustrato donde se obtiene la mitad de la Vmax

PowerPoint Presentation:

Concentración de Sustrato [S] Velocidad de la reacción (v) Km Vmax Vmax/2 A mayor Km , menor es la afinidad de la enzima por el sustrato A menor Km mayor es la afinidad de la enzima por el sustrato

PowerPoint Presentation:

K m V max

Representación Lineweaver-Burke:

-1/K m 1/V max Representación Lineweaver-Burke

Representación Hanes:

-K m 1/V max Representación Hanes

Representación de Eadie-Hofstee:

V max -K m Representación de Eadie-Hofstee

Métodos de linealización para determinación parámetros cinéticos:

Métodos de linealización para determinación parámetros cinéticos Método Eje Y Eje X Intercepto Eje Y Intercepto Eje x Pendiente Lineweaver-Burke 1/v 1/s 1/V -1/K K/V Hanes s/v s K/V -K 1/V Eadie-Hofstee v v/s V V/K -K

Definición Actividad Enzimática :

Definición Actividad Enzimática Es el número de moles de sustrato que reaccionan para formar producto, por mol de enzima y por unidad de tiempo. Esto supone que la enzima está plenamente saturada con sustrato y por tanto que la reacción se efectúa con su máxima rapidez El índice de recambio muestra la eficiencia impresionante de la catálisis enzimática

PowerPoint Presentation:

A fin de normalizar la medición de la actividad, se ocupa el valor de la velocidad inicial de reacción, donde eses factores son despreciables. Así, Esta velocidad inicial no se espera que sea observada en un proceso enzimático donde, debido a los elevados tiempos de operación, es razonable suponer que esos factores ejercerán su influencia.

Cálculo de Actividad Enzimática:

Cálculo de Actividad Enzimática La velocidad de reacción catalizada por 0,1ml de una dilución 1:100 de Fosfatasa Alcalina es 0,3umoles / min. de producto. ¿Cuál es su actividad enzimática? 0,1ml-------- 0,3umoles producto / min. 1,0ml------------3,0umoles producto / min. dil 1:100-------------300umoles producto / min. Respuesta: 300U/ml

Número o Índice de Recambio:

Número o Índice de Recambio Es útil definir una constante de velocidad más general, k cat , para describir la velocidad limitante de cualquier reacción enzimática a saturación k cat x E t = V máx V 0 = k cat x E t x [S] / K M + [S]; K cat es una constante de velocidad de 1 er orden con unidades de tiempo -1 , también llamada Número de Recambio

PowerPoint Presentation:

Efecto del pH en la ENZIMA Cada enzima tiene un pH óptimo para su actividad El pH afecta las interacciones iónicas

PowerPoint Presentation:

1. Sobre la fijación del substrato al centro activo: - Grupos disociables de la enzima - Grupos disociables del substrato 2. Sobre la transformación catalítica del substrato 3. Sobre la estructura de la proteína enzimática Efecto del pH

PowerPoint Presentation:

En el efecto de la temperatura hay dos componentes: 1. Aceleración de la reacción según la ecuación de Arrhenius k = A exp (-E a /RT) 2. Desnaturalización térmica de la proteína

PowerPoint Presentation:

Efecto de la temperatura en la ENZIMA Cada enzima tiene una temperatura óptima. Temperatura 15º 40º 75º Aumento de la velocidad Desnaturación por calor

ORGANISMOS TERMÓFILOS:

ORGANISMOS TERMÓFILOS Son organismos que viven a altas tº y realizan sus reacciones enzimáticas a estas altas tº Ejemplos son los que viven en las aguas termales Es tema de investigación el aislamiento de las enzimas de estos organismos para desarrollar procesos industriales en condiciones más extremas

Coenzimas:

Coenzimas Las coenzimas son pequeñas moléculas orgánicas, que se unen a la enzima. Las coenzimas colaboran en la reacción enzimática recibiendo transitoriamente algún grupo químico: H + , OH, CH 3 . La enzima sin la coenzima recibe el nombre de APOENZIMA

El NAD es una coenzima aceptora de H:

El NAD es una coenzima aceptora de H Sustrato oxidado

Algunas enzimas requieren metales para mejorar su actividad :

Algunas enzimas requieren metales para mejorar su actividad

Isoenzimas o Isozimas:

Isoenzimas o Isozimas Son formas moleculares diferentes de una misma enzima Catalizan la misma reacción Ejemplo: Lactato deshidrogenasa Lactato + NAD ==== Piruvato + NADH M 4 , M 3 H 1 , M 2 H 2 , M 1 H 3 y H 4 Se diferencian por su movilidad electroforética Usadas en clínica: sueros normales y sueros con alguna patología

PowerPoint Presentation:

Así esta actividad corresponde al máximo potencial catalítico que las enzimas poseen para un determinado conjunto de condiciones ambientales. Luego, estas deben ser consideradas en las expresiones matemáticas representativas del proceso enzimático. Existen situaciones (sustratos heterogéneos) donde la velocidad inicial de reacción no es representativa del real potencial catalítico de la enzima. Se asume que la velocidad inicial de reacción es proporcional a la concentración de proteína enzimática.

PowerPoint Presentation:

Inhibición enzimática

PowerPoint Presentation:

Inhibidor: Efector que hace disminuir la actividad enzimática, a través de interacciones con el centro activo u otros centros específicos (alostéricos). Esta definición excluye todos aquellos agentes que inactivan a la enzima a través de desnaturalización de la molécula enzimática De esta forma, habrá dos tipos de inhibidores: I. Isostéricos: ejercen su acción sobre el centro activo II. Alostéricos: ejercen su acción sobre otra parte de la molécula, causando un cambio conformacional con repercusión negativa en la actividad enzimática.

PowerPoint Presentation:

Inhibición enzimática isostérica

PowerPoint Presentation:

Los inhibidores isostéricos pueden ser de dos tipos: 1. Inhibidor reversible : establece un equilibrio con la enzima libre, con el complejo enzima-substrato o con ambos: E + I EI 2. Inhibidor irreversible : modifica químicamente a la enzima: E + I E’ ES + I ESI

PowerPoint Presentation:

Inhibición reversible (a) El inhibidor se fija al centro activo de la enzima libre, impidiendo la fijación del substrato: Inhibición Competitiva (b) El inhibidor se fija a la enzima independientemente de que lo haga o no el substrato; el inhibidor, por tanto, no impide la fijación del substrato a la enzima, pero sí impide la acción catalítica: Inhibición No Competitiva (c) El inhibidor se fija únicamente al complejo enzima-substrato una vez formado, impidiendo la acción catalítica; este tipo se conoce como Inhibición Anticompetitiva

PowerPoint Presentation:

Inhibición Competitiva

Inhibidores Competitivos:

Inhibidores Competitivos Compiten con el sustrato por el sitio activo de la enzima Se une solo a la enzima libre V máx no se altera y K M cambia

Inhibición competitiva:

Inhibición competitiva Al aumentar la cantidad de SUSTRATO el inhibidor competitivo es desplazado y se forma producto

PowerPoint Presentation:

E ES EI I S E + P Características: - Las fijaciones de substrato e inhibidor son mutuamente exclusivas - A muy altas concentraciones de substrato desaparece la inhibición - Por lo general, el inhibidor competitivo es un análogo químico del substrato . - El inhibidor es tan específico como el substrato Se define una constante de equilibrio de disociación del inhibidor: K i = [E] [I] [EI]

PowerPoint Presentation:

En condiciones de equilibrio rápido, llamando y a la concentración del complejo EI, para la inhibición competitiva obtenemos el siste- ma de ecuaciones Que resuelto para x nos da De donde

PowerPoint Presentation:

Por tanto, en la inhibición competitiva, 1. El efecto cinético del inhibidor es el aumento aparente de la K m , que aparece multiplicada por el factor (1 + i/K i ) 2. La V max no aparece modificada; para concentraciones muy altas del substrato, v = V max , igual que en ausencia de inhibidor 3. Cuanto más pequeño sea el valor de K i mayor será la potencia del inhibidor competitivo.

PowerPoint Presentation:

Km Sin inhibidor Km con inhibidor Sin inhibidor Con inhibidor El inhibidor competitivo aumenta la Km

PowerPoint Presentation:

-1/K m -1/(K m (1 + i/K i )) 1/V max Inhibición competitiva - Representación recíproca doble

Ejemplo Inhibidor Competitivo:

Ejemplo Inhibidor Competitivo Ácido succínico + FAD == ácido fumárico + FADH 2 El inhibidor competitivo es el ácido malónico Es un análogo estructuralmente parecido al ácido succínico

Ácido Fólico y Sulfanilamida:

Ácido Fólico y Sulfanilamida La sulfanilamida es un análogo estructural del ácido p - aminobenzoico (PABA) PABA es el punto de partida para la síntesis de ácido fólico en las bacterias El ácido fólico es una vitamina esencial para la proliferación (división) bacteriana Sulfanilamida se usa en el tratamiento algunas infecciones

Metotrexato y Dihidrofolato:

Metotrexato y Dihidrofolato El ácido fólico en sus formas de dihidro y tetrahidrofolato es coenzima de la reacción catalizada por la dihidrofolato reductasa Esta reacción es parte del metabolismo de los nucleótidos para la síntesis de DNA Metotrexato se usa en la terapia de algunos cánceres , inhibiendo la síntesis de DNA

Inhibidor competitivo su estructura es similar a la del sustrato:

Inhibidor competitivo su estructura es similar a la del sustrato No se forma producto

PowerPoint Presentation:

Inhibición No Competitiva

Inhibidor No Competitivo:

Inhibidor No Competitivo Se une a un lugar diferente del sitio activo la enzima Se une a la enzima libre y también al complejo enzima-sustrato Por acción del inhibidor disminuye la V m pero el valor de K m no se altera

Inhibición NO competitiva:

Inhibición NO competitiva

PowerPoint Presentation:

Inhibidor NO competitivo El inhibidor NO competitivo se une a la enzima en un sitio diferente del sitio activo

PowerPoint Presentation:

E ES EI I S E + P I ESI S Inhibición No Competitiva El inhibidor se fija indistintamente a la enzima libre E y al complejo enzima-substrato ES; ni el complejo EI ni el complejo ESI son productivos

PowerPoint Presentation:

Inhibición Anticompetitiva o Incompetitiva

Inhibidor Incompetitivo:

Inhibidor Incompetitivo En este tipo de inhibición el inhibidor se enlaza al centro activo pero solo después de que el sustrato lo haya hecho y, por tanto, inhibidor y sustrato no compiten. De esta manera, aunque todo el sustrato esté saturando la enzima y toda la enzima esté como complejo ES, el inhibidor puede enlazarse produciendo un complejo inactivo ESI. Como I solo se une a ES estimula la formación de ES y, por tanto, incrementa la unión del sustrato a la enzima, disminuyendo Km . Sin embargo, el complejo ESI no conduce a productos y Vm disminuye.

Inhibidor Incompetitivo:

Inhibidor Incompetitivo Se une a un lugar diferente del sitio activo de la enzima Se une sólo al complejo enzima-sustrato Los efectos que tiene: disminuye el valor de K m y también el de V máx

PowerPoint Presentation:

E ES S E + P I ESI Inhibición Anticompetitiva El inhibidor sólo puede fijarse al complejo ES; el complejo ESI no es productivo

Determinación de parámetros cinéticos de inhibición:

Modelo Kap Vap Inh comp Km(1+i/Ki) Vm Inh no comp total Km Vm/(1+i/Ki) Inh anticomp Km/(1+i/Ki) Vm /(1+i/Ki) Determinación de parámetros cinéticos de inhibición

PowerPoint Presentation:

Inhibición Irreversible - Los inhibidores irreversibles reaccionan con un grupo químico de la enzima, modificándola covalentemente - Su acción no se describe por una constante de equilibrio K i , sino por una constante de velocidad k i : E + I E’ - A diferencia de la inhibición reversible, el efecto de los inhibidores irreversibles depende del tiempo de actuación del inhibidor. - Los inhibidores irreversibles son, por lo general, altamente tóxicos.

Inhibidores Irreversibles:

Inhibidores Irreversibles Producen inactivación permanente de la actividad enzimática Se interfiere con el normal desarrollo de una reacción o vía metabólica Ejemplos: p-cloromercuribenzoato, yodoacetato, diisopropilfluorfosfato

PowerPoint Presentation:

Algunos tipos de inhibidores irreversibles 1. Reactivos de grupos -SH 2. Organofosfóricos 3. Ligandos de metales 4. Metales pesados

PowerPoint Presentation:

Inhibición enzimática alosterica

Enzimas Alostéricas:

Enzimas Alostéricas Son enzimas cuya estructura proteica está formada de varias subunidades No se rigen por la cinética de M - M Además del sitio o centro activo tienen sitios alostéricos o de regulación Sitio activo/sustratos; Sitio alostérico/moduladores o reguladores La relación entre la velocidad de reacción y la concentración de sustrato sigue cinética sigmoídea

Enzimas alostéricas:

Enzimas alostéricas Las enzimas alostéricas presentan estructura cuaternaria. Tienen diferentes sitios activos, unen mas de una molécula de sustrato La unión del sustrato es cooperativa la curva de velocidad presenta una forma sigmoidal

Concepto de Cooperatividad:

Concepto de Cooperatividad La unión de los sustratos al sitio activo de una subunidad produce un cambio conformacional que por contacto físico se transmite a las subunidades vecinas, facilitando las interacciones Modelos de unión: secuencial y concertado Ejemplos: unión Hb-O 2 , enzimas alostéricas y sus sustratos

Moduladores Alostéricos:

Moduladores Alostéricos También reciben el nombre de efectores y pueden ser positivos o negativos Se unen al sitio alostérico que puede estar en la misma subunidad que tiene al sitio activo o en las subunidades regulatorias Su unión produce un cambio conformacional que afecta al sitio activo

Aspartato Transcarbamilasa:

Aspartato Transcarbamilasa Ác L-asp + Carbamil-P === Carbamil-asp + Pi . Primera reacción en la síntesis de pirimidinas Efector positivo: CTP Efector negativo: ATP Tiene dos subunidades catalíticas para los sustratos y tres subunidades regulatorias para los efectores

RESUMEN:

RESUMEN Las enzimas son proteínas que catalizan las reacciones biológicas Presentan especificidad por su sustrato Cada enzima presenta dos parámetros importantes Vmax (saturación de la enzima) y la Km (medida de la afinidad por el sustrato)

RESUMEN:

RESUMEN La actividad enzimática puede ser inhibida, por inhibidores competitivos (similares al sustrato) o por inhibidores no competitivos. La temperatura y el pH afectan a la enzima en su actividad catalítica. Algunas enzimas requieren de coenzimas y/o cofactores para su actividad.

authorStream Live Help