Seis piezas fáciles

Views:
 
Category: Entertainment
     
 

Presentation Description

No description available.

Comments

Presentation Transcript

Seis piezas fácilesLa física explicada por un genio : 

Seis piezas fácilesLa física explicada por un genio

Richard P. Feynman : 

Richard P. Feynman

Introducción de Paul Davies : 

Introducción de Paul Davies

Traducción de Javier García Sanz : 

Traducción de Javier García Sanz

Drakontos : 

Drakontos

Directores: Josep Fontana y Gonzalo Pontón : 

Directores: Josep Fontana y Gonzalo Pontón

Crítica : 

Crítica

Grijalbo Mondadori (Barcelona) : 

Grijalbo Mondadori (Barcelona)

Título original: Six easy pieces : 

Título original: Six easy pieces

Essentials of physics explained by its most brilliant teacher : 

Essentials of physics explained by its most brilliant teacher

Helix Books, Addison-Wesley Publishing Company, Reading, Mass. : 

Helix Books, Addison-Wesley Publishing Company, Reading, Mass.

© 1995, 1989, 1963 California Institute of Technology : 

© 1995, 1989, 1963 California Institute of Technology

© 1998 Grijalbo Mondadori : 

© 1998 Grijalbo Mondadori

ISBN 84-7423-871-4 : 

ISBN 84-7423-871-4

Depósito legal: B 3-1998 : 

Depósito legal: B 3-1998

Slide 26: 

— —

Nota editorial : 

Nota editorial

Seis piezas fáciles surgió de la necesidad de llevar a una audiencia lo más amplia posible una introducción a la física, sustancial pero no técnica, basada en la ciencia de Richard Feynman. Hemos escogido los seis capítulos más fáciles del celebrado y señero texto de Feynman, Lecciones de física (publicado originalmente en 1963), que sigue siendo su publicación más famosa. Los lectores no especializados tienen la fortuna de que Feynman decidiera presentar algunos temas clave en términos básicamente cualitativos sin matemáticas formales, y estos temas se han reunido en Seis piezas fáciles. : 

Seis piezas fáciles surgió de la necesidad de llevar a una audiencia lo más amplia posible una introducción a la física, sustancial pero no técnica, basada en la ciencia de Richard Feynman. Hemos escogido los seis capítulos más fáciles del celebrado y señero texto de Feynman, Lecciones de física (publicado originalmente en 1963), que sigue siendo su publicación más famosa. Los lectores no especializados tienen la fortuna de que Feynman decidiera presentar algunos temas clave en términos básicamente cualitativos sin matemáticas formales, y estos temas se han reunido en Seis piezas fáciles.

Addison-Wesley Publishing Company desea agradecer a Paul Davies su penetrante introducción a esta nueva compilación. Tras su introducción hemos decidido reproducir dos prefacios de las Lecciones de física, uno de ellos del propio Feynman y otro de dos de sus colegas, puesto que ambos ofrecen el contexto para las piezas que siguen, además de impresiones tanto sobre Richard Feynman como sobre su ciencia. : 

Addison-Wesley Publishing Company desea agradecer a Paul Davies su penetrante introducción a esta nueva compilación. Tras su introducción hemos decidido reproducir dos prefacios de las Lecciones de física, uno de ellos del propio Feynman y otro de dos de sus colegas, puesto que ambos ofrecen el contexto para las piezas que siguen, además de impresiones tanto sobre Richard Feynman como sobre su ciencia.

Finalmente, quisiéramos expresar nuestro agradecimiento al Departamento de Física y a los Archivos del Instituto Tecnológico de California, en particular a la doctora Judith Goodstein, y al doctor Brian Hatfield, por sus excelentes consejos y recomendaciones durante el desarrollo de este proyecto. : 

Finalmente, quisiéramos expresar nuestro agradecimiento al Departamento de Física y a los Archivos del Instituto Tecnológico de California, en particular a la doctora Judith Goodstein, y al doctor Brian Hatfield, por sus excelentes consejos y recomendaciones durante el desarrollo de este proyecto.

Slide 31: 

— —

Introducción : 

Introducción

Existe una falsa creencia popular según la cual la ciencia es una empresa impersonal, desapasionada y completamente objetiva, mientras que la mayor parte de las otras actividades humanas están dominadas por modas, caprichos y caracteres, se supone que la ciencia se atiene a reglas de procedimiento establecidas y pruebas rigurosas. Lo que cuenta son los resultados, y no las personas que los producen. : 

Existe una falsa creencia popular según la cual la ciencia es una empresa impersonal, desapasionada y completamente objetiva, mientras que la mayor parte de las otras actividades humanas están dominadas por modas, caprichos y caracteres, se supone que la ciencia se atiene a reglas de procedimiento establecidas y pruebas rigurosas. Lo que cuenta son los resultados, y no las personas que los producen.

Esto es, por supuesto, de lo más absurdo. La ciencia, como cualquier empresa humana, es una actividad impulsada por personas y está igualmente sujeta a modas y caprichos. En este caso, la moda no se establece tanto por la elección del tema como por la forma en que los científicos piensan acerca del mundo. Cada época adopta un enfoque particular para los problemas científicos, siguiendo normalmente la estela dejada por algunas figuras dominantes que fijan los temas y definen los mejores métodos para tratarlos. De vez en cuando, el científico alcanza altura suficiente para llegar a la atención del público general, y cuando está dotado de un don sobresaliente un científico puede llegar a convertirse en un ídolo para toda la comunidad científica. En siglos pasados Isaac Newton fue un ídolo. Newton personificó al científico caballero: bien relacionado, devotamente religioso, tranquilo y metódico en su trabajo. Su estilo de hacer ciencia fijó el canon durante doscientos años. En la primera mitad del siglo XX Albert Einstein reemplazó a Newton como ídolo científico popular. Excéntrico, desmelenado, germánico, distraído, completamente absorto en su trabajo y un pensador abstracto arquetípico, Einstein cambió el modo de hacer física al cuestionarse los propios conceptos que definen la disciplina. : 

Esto es, por supuesto, de lo más absurdo. La ciencia, como cualquier empresa humana, es una actividad impulsada por personas y está igualmente sujeta a modas y caprichos. En este caso, la moda no se establece tanto por la elección del tema como por la forma en que los científicos piensan acerca del mundo. Cada época adopta un enfoque particular para los problemas científicos, siguiendo normalmente la estela dejada por algunas figuras dominantes que fijan los temas y definen los mejores métodos para tratarlos. De vez en cuando, el científico alcanza altura suficiente para llegar a la atención del público general, y cuando está dotado de un don sobresaliente un científico puede llegar a convertirse en un ídolo para toda la comunidad científica. En siglos pasados Isaac Newton fue un ídolo. Newton personificó al científico caballero: bien relacionado, devotamente religioso, tranquilo y metódico en su trabajo. Su estilo de hacer ciencia fijó el canon durante doscientos años. En la primera mitad del siglo XX Albert Einstein reemplazó a Newton como ídolo científico popular. Excéntrico, desmelenado, germánico, distraído, completamente absorto en su trabajo y un pensador abstracto arquetípico, Einstein cambió el modo de hacer física al cuestionarse los propios conceptos que definen la disciplina.

Richard Feynman se ha convertido en un ídolo para la física de finales del siglo XX, el primer norteamericano en alcanzar este estatus. Nacido en Nueva York en 1918 y educado en la Costa Este, llegó demasiado tarde para participar en la edad de oro de la física, que, en las tres primeras décadas de este siglo, transformó nuestra visión del mundo con las revoluciones gemelas de la teoría de la relatividad y la mecánica cuántica. Estos rápidos desarrollos sentaron los cimientos del edificio que ahora llamamos la Nueva Física. Feynman partió de estos cimientos y ayudó a construir la primera planta de la Nueva Física. Sus contribuciones alcanzaron a casi todos los rincones de la disciplina y han tenido una profunda influencia en el modo en que los físicos piensan acerca del universo físico. : 

Richard Feynman se ha convertido en un ídolo para la física de finales del siglo XX, el primer norteamericano en alcanzar este estatus. Nacido en Nueva York en 1918 y educado en la Costa Este, llegó demasiado tarde para participar en la edad de oro de la física, que, en las tres primeras décadas de este siglo, transformó nuestra visión del mundo con las revoluciones gemelas de la teoría de la relatividad y la mecánica cuántica. Estos rápidos desarrollos sentaron los cimientos del edificio que ahora llamamos la Nueva Física. Feynman partió de estos cimientos y ayudó a construir la primera planta de la Nueva Física. Sus contribuciones alcanzaron a casi todos los rincones de la disciplina y han tenido una profunda influencia en el modo en que los físicos piensan acerca del universo físico.

Feynman fue un físico teórico por excelencia. Newton había sido experimentador y teórico en la misma medida. Einstein era simplemente desdeñoso del experimento, prefiriendo poner su fe en el pensamiento puro. Feynman se vio impulsado a desarrollar una profunda comprensión teórica de la naturaleza, pero siempre permaneció próximo al mundo real y a menudo confuso de los resultados experimentales. Nadie que hubiera visto al último Feynman discutir la causa del desastre de la lanzadera espacial Challenger sumergiendo una banda elástica en agua helada podría dudar de que aquí había a la vez un showman y un pensador muy práctico. : 

Feynman fue un físico teórico por excelencia. Newton había sido experimentador y teórico en la misma medida. Einstein era simplemente desdeñoso del experimento, prefiriendo poner su fe en el pensamiento puro. Feynman se vio impulsado a desarrollar una profunda comprensión teórica de la naturaleza, pero siempre permaneció próximo al mundo real y a menudo confuso de los resultados experimentales. Nadie que hubiera visto al último Feynman discutir la causa del desastre de la lanzadera espacial Challenger sumergiendo una banda elástica en agua helada podría dudar de que aquí había a la vez un showman y un pensador muy práctico.

Inicialmente, Feynman adquirió renombre con su trabajo sobre la teoría de las partículas subatómicas, en concreto la teoría conocida como electrodinámica cuántica o QED. De hecho, este fue el tema con el que se inició la teoría cuántica. En 1900, el físico alemán Max Planck propuso que la luz y las otras formas de radiación electromagnética, que hasta entonces habían sido consideradas como ondas, se comportaban paradójicamente como minúsculos paquetes de energía, o «cuantos», cuando interaccionaban con la materia. Estos cuantos particulares llegaron a conocerse como fotones. A comienzos de los años treinta los arquitectos de la nueva mecánica cuántica habían elaborado un esquema matemático para describir la emisión y absorción de fotones por partículas eléctricamente cargadas tales como electrones. Aunque esta primera formulación de la QED disfrutó de cierto éxito limitado, la teoría tenía fallos evidentes. En muchos casos los cálculos daban respuestas inconsistentes e incluso infinitas a preguntas físicas bien planteadas. Fue al problema de construir una teoría consistente de la QED al que orientó su atención el joven Feynman a finales de los años cuarenta. : 

Inicialmente, Feynman adquirió renombre con su trabajo sobre la teoría de las partículas subatómicas, en concreto la teoría conocida como electrodinámica cuántica o QED. De hecho, este fue el tema con el que se inició la teoría cuántica. En 1900, el físico alemán Max Planck propuso que la luz y las otras formas de radiación electromagnética, que hasta entonces habían sido consideradas como ondas, se comportaban paradójicamente como minúsculos paquetes de energía, o «cuantos», cuando interaccionaban con la materia. Estos cuantos particulares llegaron a conocerse como fotones. A comienzos de los años treinta los arquitectos de la nueva mecánica cuántica habían elaborado un esquema matemático para describir la emisión y absorción de fotones por partículas eléctricamente cargadas tales como electrones. Aunque esta primera formulación de la QED disfrutó de cierto éxito limitado, la teoría tenía fallos evidentes. En muchos casos los cálculos daban respuestas inconsistentes e incluso infinitas a preguntas físicas bien planteadas. Fue al problema de construir una teoría consistente de la QED al que orientó su atención el joven Feynman a finales de los años cuarenta.

Para colocar la QED sobre una base sólida era necesario hacer la teoría consistente no sólo con los principios de la mecánica cuántica sino también con los de la teoría de la relatividad especial. Estas dos teorías traían sus propias herramientas matemáticas características, complicados sistemas de ecuaciones que de hecho pueden combinarse y reconciliarse para dar una descripción satisfactoria de la QUED. Hacer esto era una empresa dura que requería un alto grado de habilidad matemática, y este fue el enfoque seguido por los contemporáneos de Feynman. Feynman, sin embargo, tomó un camino completamente diferente; tan radical, de hecho, ¡que él fue más o menos capaz de elaborar las respuestas directamente sin utilizar ninguna matemática! : 

Para colocar la QED sobre una base sólida era necesario hacer la teoría consistente no sólo con los principios de la mecánica cuántica sino también con los de la teoría de la relatividad especial. Estas dos teorías traían sus propias herramientas matemáticas características, complicados sistemas de ecuaciones que de hecho pueden combinarse y reconciliarse para dar una descripción satisfactoria de la QUED. Hacer esto era una empresa dura que requería un alto grado de habilidad matemática, y este fue el enfoque seguido por los contemporáneos de Feynman. Feynman, sin embargo, tomó un camino completamente diferente; tan radical, de hecho, ¡que él fue más o menos capaz de elaborar las respuestas directamente sin utilizar ninguna matemática!

Como ayuda para esta extraordinaria hazaña de intuición, Feynman inventó un sencillo sistema de diagramas epónimos. Los diagramas de Feynman son una manera simbólica pero poderosamente heurística de representar lo que sucede cuando los electrones, fotones y otras partículas interaccionan entre sí. Actualmente los diagramas de Feynman son una ayuda rutinaria para el cálculo, pero a comienzos de los años cincuenta marcaron un alejamiento sorprendente de la forma tradicional de hacer física teórica. : 

Como ayuda para esta extraordinaria hazaña de intuición, Feynman inventó un sencillo sistema de diagramas epónimos. Los diagramas de Feynman son una manera simbólica pero poderosamente heurística de representar lo que sucede cuando los electrones, fotones y otras partículas interaccionan entre sí. Actualmente los diagramas de Feynman son una ayuda rutinaria para el cálculo, pero a comienzos de los años cincuenta marcaron un alejamiento sorprendente de la forma tradicional de hacer física teórica.

El problema concreto de construir una teoría consistente de la electrodinámica cuántica, aun constituyendo un jalón en el desarrollo de la física, fue sólo el principio. Iba a definir un estilo característico de Feynman, un estilo destinado a producir una cadena de resultados importantes en un amplio abanico de temas en la ciencia física. El estilo de Feynman puede describirse mejor como una mezcla de reverencia y falta de respeto hacia la sabiduría recibida. : 

El problema concreto de construir una teoría consistente de la electrodinámica cuántica, aun constituyendo un jalón en el desarrollo de la física, fue sólo el principio. Iba a definir un estilo característico de Feynman, un estilo destinado a producir una cadena de resultados importantes en un amplio abanico de temas en la ciencia física. El estilo de Feynman puede describirse mejor como una mezcla de reverencia y falta de respeto hacia la sabiduría recibida.

La física es una ciencia exacta, y el cuerpo de conocimiento existente, aunque incompleto, no puede ser simplemente dejado de lado. Feynman adquirió una visión formidable de los principios aceptados de la física a una edad muy temprana, y decidió trabajar casi por completo sobre problemas convencionales. No era el tipo de genio que trabajase aislado en un remanso de la disciplina y diese con algo profundamente nuevo. Su talento especial consistía en aproximarse a temas esencialmente corrientes de una forma particular. Esto implicaba dejar de lado los formalismos existentes y desarrollar su propio enfoque altamente intuitivo. Mientras la mayoría de los físicos teóricos confían en cuidadosos cálculos matemáticos que proporcionen una guía hacia territorios poco familiares, la actitud de Feynman era casi displicente. Uno tiene la impresión de que él podía leer en la naturaleza como en un libro e informar simplemente de lo que encontraba, sin análisis tediosos y complejos. : 

La física es una ciencia exacta, y el cuerpo de conocimiento existente, aunque incompleto, no puede ser simplemente dejado de lado. Feynman adquirió una visión formidable de los principios aceptados de la física a una edad muy temprana, y decidió trabajar casi por completo sobre problemas convencionales. No era el tipo de genio que trabajase aislado en un remanso de la disciplina y diese con algo profundamente nuevo. Su talento especial consistía en aproximarse a temas esencialmente corrientes de una forma particular. Esto implicaba dejar de lado los formalismos existentes y desarrollar su propio enfoque altamente intuitivo. Mientras la mayoría de los físicos teóricos confían en cuidadosos cálculos matemáticos que proporcionen una guía hacia territorios poco familiares, la actitud de Feynman era casi displicente. Uno tiene la impresión de que él podía leer en la naturaleza como en un libro e informar simplemente de lo que encontraba, sin análisis tediosos y complejos.

En realidad, al seguir sus intereses de esta manera Feynman mostraba un saludable desprecio por los formalismos rigurosos. Es difícil transmitir la profundidad del genio necesario para trabajar de este modo. La física teórica es uno de los más duros ejercicios intelectuales, que combina conceptos abstractos que desafían la visualización con una complejidad matemática extraordinaria. Sólo adoptando los más altos niveles de disciplina mental pueden hacer progresos la mayoría de los físicos. Pero Feynman hacía caso omiso de este estricto código de actuación y arrancaba nuevos resultados como frutos maduros del Árbol del Conocimiento. : 

En realidad, al seguir sus intereses de esta manera Feynman mostraba un saludable desprecio por los formalismos rigurosos. Es difícil transmitir la profundidad del genio necesario para trabajar de este modo. La física teórica es uno de los más duros ejercicios intelectuales, que combina conceptos abstractos que desafían la visualización con una complejidad matemática extraordinaria. Sólo adoptando los más altos niveles de disciplina mental pueden hacer progresos la mayoría de los físicos. Pero Feynman hacía caso omiso de este estricto código de actuación y arrancaba nuevos resultados como frutos maduros del Árbol del Conocimiento.

El estilo de Feynman debía mucho a la personalidad del hombre. En su vida profesional y privada parecía enfrentarse al mundo como si fuera un juego enormemente divertido. El universo físico se le presentaba como una serie fascinante de rompecabezas y desafíos, y lo mismo sucedía con su entorno social. Un eterno iconoclasta, trataba a la autoridad y al estamento académico con la misma falta de respeto que mostraba hacia el formalismo matemático rígido. Con poca paciencia para soportar estupideces, rompía las reglas cuando quiera que las encontrara arbitrarias o absurdas. Sus escritos autobiográficos contienen historias divertidas acerca de Feynman burlando los servicios de seguridad de la bomba atómica durante la guerra, Feynman violando claves, Feynman desarmando a las mujeres con un comportamiento descaradamente atrevido. De la misma forma, lo tomas o lo dejas, trató a su premio Nobel, concedido por su trabajo sobre la QED. : 

El estilo de Feynman debía mucho a la personalidad del hombre. En su vida profesional y privada parecía enfrentarse al mundo como si fuera un juego enormemente divertido. El universo físico se le presentaba como una serie fascinante de rompecabezas y desafíos, y lo mismo sucedía con su entorno social. Un eterno iconoclasta, trataba a la autoridad y al estamento académico con la misma falta de respeto que mostraba hacia el formalismo matemático rígido. Con poca paciencia para soportar estupideces, rompía las reglas cuando quiera que las encontrara arbitrarias o absurdas. Sus escritos autobiográficos contienen historias divertidas acerca de Feynman burlando los servicios de seguridad de la bomba atómica durante la guerra, Feynman violando claves, Feynman desarmando a las mujeres con un comportamiento descaradamente atrevido. De la misma forma, lo tomas o lo dejas, trató a su premio Nobel, concedido por su trabajo sobre la QED.

Junto a este malestar por el formalismo, Feynman sentía una fascinación hacia lo extraño y oscuro. Muchos recordarán su obsesión con el país hace tiempo perdido de Tuva en el Asia Central, tan deliciosamente captado en un film documental realizado poco antes de muerte. Sus otras pasiones incluían tocar los bongos, la pintura, frecuentar clubs de strip tease y descifrar los textos mayas. : 

Junto a este malestar por el formalismo, Feynman sentía una fascinación hacia lo extraño y oscuro. Muchos recordarán su obsesión con el país hace tiempo perdido de Tuva en el Asia Central, tan deliciosamente captado en un film documental realizado poco antes de muerte. Sus otras pasiones incluían tocar los bongos, la pintura, frecuentar clubs de strip tease y descifrar los textos mayas.

El propio Feynman hizo mucho para cultivar su personalidad característica. Aunque reacio a poner la pluma sobre el papel, era versátil en la conversación y disfrutaba contando historias sobre sus ideas y escapadas. Estas anécdotas, acumuladas durante años, se sumaron a su mística e hicieron de él una leyenda proverbial durante su vida. Sus encantadores modales le ganaron el aprecio de los estudiantes, especialmente los más jóvenes, muchos de los cuales le idolatraban. Cuando Feynman murió de cáncer en 1988, los estudiantes del Caltech, donde él había trabajado durante la mayor parte de su carrera, desplegaron una pancarta con el simple mensaje: «Te queremos, Dick». : 

El propio Feynman hizo mucho para cultivar su personalidad característica. Aunque reacio a poner la pluma sobre el papel, era versátil en la conversación y disfrutaba contando historias sobre sus ideas y escapadas. Estas anécdotas, acumuladas durante años, se sumaron a su mística e hicieron de él una leyenda proverbial durante su vida. Sus encantadores modales le ganaron el aprecio de los estudiantes, especialmente los más jóvenes, muchos de los cuales le idolatraban. Cuando Feynman murió de cáncer en 1988, los estudiantes del Caltech, donde él había trabajado durante la mayor parte de su carrera, desplegaron una pancarta con el simple mensaje: «Te queremos, Dick».

Fue esta aproximación desinhibida a la vida en general y a la física en particular la que hizo de él un comunicador tan soberbio. Tenía poco tiempo para impartir clases formales o incluso para supervisar a estudiantes de doctorado. De todas formas, podía dar brillantes lecciones cuando se lo proponía, desplegando todo el genio chispeante, la intuición penetrante y la irreverencia de que hacía gala en su trabajo de investigación. : 

Fue esta aproximación desinhibida a la vida en general y a la física en particular la que hizo de él un comunicador tan soberbio. Tenía poco tiempo para impartir clases formales o incluso para supervisar a estudiantes de doctorado. De todas formas, podía dar brillantes lecciones cuando se lo proponía, desplegando todo el genio chispeante, la intuición penetrante y la irreverencia de que hacía gala en su trabajo de investigación.

A comienzos de los años sesenta Feynman fue persuadido para impartir un curso de física introductorio para los estudiantes de primer y segundo año en el Caltech. Lo hizo con su tono característico y su inimitable mezcla de informalidad, gusto y humor poco convencional. Afortunadamente, estas lecciones inapreciables fueron salvadas para la posteridad en forma de libro. Aunque muy alejadas en estilo o presentación de los textos de enseñanza más convencionales, las Lecciones de Física de Feynman tuvieron un enorme éxito y excitaron e inspiraron a una generación de estudiantes en todo el mundo. Tres décadas después, estos volúmenes no han perdido nada de su chispa y lucidez. Seis piezas fáciles está extraído directamente de las Lecciones de Física. Se propone ofrecer a los lectores no especializados un sabor sustancial de Feynman el Educador extraído de los primeros capítulos no técnicos de esta obra señera. El resultado es un libro delicioso, que sirve a la vez como una introducción a la física para los no científicos y como una introducción al propio Feynman. : 

A comienzos de los años sesenta Feynman fue persuadido para impartir un curso de física introductorio para los estudiantes de primer y segundo año en el Caltech. Lo hizo con su tono característico y su inimitable mezcla de informalidad, gusto y humor poco convencional. Afortunadamente, estas lecciones inapreciables fueron salvadas para la posteridad en forma de libro. Aunque muy alejadas en estilo o presentación de los textos de enseñanza más convencionales, las Lecciones de Física de Feynman tuvieron un enorme éxito y excitaron e inspiraron a una generación de estudiantes en todo el mundo. Tres décadas después, estos volúmenes no han perdido nada de su chispa y lucidez. Seis piezas fáciles está extraído directamente de las Lecciones de Física. Se propone ofrecer a los lectores no especializados un sabor sustancial de Feynman el Educador extraído de los primeros capítulos no técnicos de esta obra señera. El resultado es un libro delicioso, que sirve a la vez como una introducción a la física para los no científicos y como una introducción al propio Feynman.

Lo más impresionante de la cuidadosamente elaborada exposición de Feynman es la forma en que es capaz de desarrollar nociones físicas de gran alcance a partir de una mínima inversión en conceptos, y con un mínimo de matemáticas y jerga técnica. Tiene la habilidad de encontrar precisamente la analogía correcta o la ilustración cotidiana para transmitir la esencia de un principio profundo, sin oscurecerlo con detalles accidentales e irrelevantes. : 

Lo más impresionante de la cuidadosamente elaborada exposición de Feynman es la forma en que es capaz de desarrollar nociones físicas de gran alcance a partir de una mínima inversión en conceptos, y con un mínimo de matemáticas y jerga técnica. Tiene la habilidad de encontrar precisamente la analogía correcta o la ilustración cotidiana para transmitir la esencia de un principio profundo, sin oscurecerlo con detalles accidentales e irrelevantes.

La selección de los temas contenidos en este volumen no pretende ser una revisión completa de la física moderna, sino que intenta dar un sabor seductor del enfoque de Feynman. Pronto descubrimos cómo puede iluminar incluso temas triviales como los de fuerza y movimiento con nuevas intuiciones. Los conceptos clave están ilustrados con ejemplos sacados de la vida diaria o de la Antigüedad. La física se relaciona continuamente con otras ciencias mientras que al lector no le queda ninguna duda sobre cuál es la disciplina fundamental. : 

La selección de los temas contenidos en este volumen no pretende ser una revisión completa de la física moderna, sino que intenta dar un sabor seductor del enfoque de Feynman. Pronto descubrimos cómo puede iluminar incluso temas triviales como los de fuerza y movimiento con nuevas intuiciones. Los conceptos clave están ilustrados con ejemplos sacados de la vida diaria o de la Antigüedad. La física se relaciona continuamente con otras ciencias mientras que al lector no le queda ninguna duda sobre cuál es la disciplina fundamental.

Desde el mismo principio de Seis piezas fáciles aprendemos que toda la física está enraizada en la noción de ley: la existencia de un universo ordenado que puede ser entendido mediante la aplicación del pensamiento racional. Sin embargo, las leyes de la física no son transparentes para nosotros en nuestras observaciones directas de la naturaleza. Están frustrantemente ocultas, sutilmente codificadas en los fenómenos que estudiamos. Los procedimientos arcanos del físico —una mezcla de experimentación cuidadosamente diseñada y teorización matemática— son necesarios para desvelar la realidad legaliforme subyacente. : 

Desde el mismo principio de Seis piezas fáciles aprendemos que toda la física está enraizada en la noción de ley: la existencia de un universo ordenado que puede ser entendido mediante la aplicación del pensamiento racional. Sin embargo, las leyes de la física no son transparentes para nosotros en nuestras observaciones directas de la naturaleza. Están frustrantemente ocultas, sutilmente codificadas en los fenómenos que estudiamos. Los procedimientos arcanos del físico —una mezcla de experimentación cuidadosamente diseñada y teorización matemática— son necesarios para desvelar la realidad legaliforme subyacente.

Posiblemente la ley más conocida de la física es la ley de Newton de la inversa del cuadrado para la gravitación, discutida en el capítulo 5, sobre la gravitación. El tema se introduce en el contexto del Sistema Solar y las leyes de Kepler del movimiento planetario. Pero la gravitación es universal, se aplica en todo el cosmos, lo que capacita a Feynman para salpicar su exposición con ejemplos tomados de la astronomía y la cosmología. Comentando una fotografía de un cúmulo globular, mantenido de algún modo por fuerzas invisibles, exclama líricamente: «Si alguien no puede ver aquí la gravitación en acción, es que no tiene alma». : 

Posiblemente la ley más conocida de la física es la ley de Newton de la inversa del cuadrado para la gravitación, discutida en el capítulo 5, sobre la gravitación. El tema se introduce en el contexto del Sistema Solar y las leyes de Kepler del movimiento planetario. Pero la gravitación es universal, se aplica en todo el cosmos, lo que capacita a Feynman para salpicar su exposición con ejemplos tomados de la astronomía y la cosmología. Comentando una fotografía de un cúmulo globular, mantenido de algún modo por fuerzas invisibles, exclama líricamente: «Si alguien no puede ver aquí la gravitación en acción, es que no tiene alma».

Se conocen otras leyes relativas a las diversas fuerzas no gravitatorias de la naturaleza que describen cómo interaccionan entre sí las partículas de materia. Sólo hay un puñado de estas fuerzas, y el propio Feynman ostenta la notable distinción de ser uno de los pocos científicos en la historia que ha descubierto una nueva ley de la física, concerniente al modo en que una fuerza nuclear débil afecta al comportamiento de ciertas partículas subatómicas. : 

Se conocen otras leyes relativas a las diversas fuerzas no gravitatorias de la naturaleza que describen cómo interaccionan entre sí las partículas de materia. Sólo hay un puñado de estas fuerzas, y el propio Feynman ostenta la notable distinción de ser uno de los pocos científicos en la historia que ha descubierto una nueva ley de la física, concerniente al modo en que una fuerza nuclear débil afecta al comportamiento de ciertas partículas subatómicas.

La física de partículas de altas energías fue la joya de la corona de la ciencia de la posguerra, al mismo tiempo temible y atractiva, con sus enormes aceleradores y su aparentemente inacabable lista de partículas subatómicas recién descubiertas. La investigación de Feynman estuvo dirigida principalmente a explicar los resultados de esta empresa. Un gran tema unificador entre los físicos de partículas ha sido el papel de la simetría y las leyes de conservación para poner orden en el zoológico subatómico. : 

La física de partículas de altas energías fue la joya de la corona de la ciencia de la posguerra, al mismo tiempo temible y atractiva, con sus enormes aceleradores y su aparentemente inacabable lista de partículas subatómicas recién descubiertas. La investigación de Feynman estuvo dirigida principalmente a explicar los resultados de esta empresa. Un gran tema unificador entre los físicos de partículas ha sido el papel de la simetría y las leyes de conservación para poner orden en el zoológico subatómico.

Muchas de las simetrías conocidas por los físicos de partículas eran ya familiares en la física clásica. Entre éstas eran claves las simetrías que surgen de la homogeneidad del espacio y el tiempo. Consideremos el tiempo: aparte de la cosmología, donde el «big bang» marcó el comienzo del tiempo, no hay nada en la física que distinga un instante de tiempo del siguiente. Los físicos dicen que el mundo es «invariante bajo traslación temporal», lo que quiere decir que ya tomemos la medianoche o el mediodía como el cero de tiempo en nuestras medidas, esto no supone ninguna diferencia en la descripción de los fenómenos físicos. Los procesos físicos no dependen de un cero absoluto del tiempo. Sucede que esta simetría bajo traslación temporal implica directamente una de las leyes más básicas, y también más útiles, de la física: la ley de la conservación de la energía. Esta ley dice que podemos llevar la energía de un lado a otro y transformarla, pero no podemos crearla o destruirla. Feynman hace esta ley cristalinamente clara con su divertida historia de Daniel el Travieso que siempre está ocultando malévolamente sus bloques de construcción de juguete a su madre (capítulo 4, sobre la conservación de la energía). : 

Muchas de las simetrías conocidas por los físicos de partículas eran ya familiares en la física clásica. Entre éstas eran claves las simetrías que surgen de la homogeneidad del espacio y el tiempo. Consideremos el tiempo: aparte de la cosmología, donde el «big bang» marcó el comienzo del tiempo, no hay nada en la física que distinga un instante de tiempo del siguiente. Los físicos dicen que el mundo es «invariante bajo traslación temporal», lo que quiere decir que ya tomemos la medianoche o el mediodía como el cero de tiempo en nuestras medidas, esto no supone ninguna diferencia en la descripción de los fenómenos físicos. Los procesos físicos no dependen de un cero absoluto del tiempo. Sucede que esta simetría bajo traslación temporal implica directamente una de las leyes más básicas, y también más útiles, de la física: la ley de la conservación de la energía. Esta ley dice que podemos llevar la energía de un lado a otro y transformarla, pero no podemos crearla o destruirla. Feynman hace esta ley cristalinamente clara con su divertida historia de Daniel el Travieso que siempre está ocultando malévolamente sus bloques de construcción de juguete a su madre (capítulo 4, sobre la conservación de la energía).

La lección de este libro que plantea un reto mayor es la última, que es una exposición de la física cuántica. No es exagerado decir que la mecánica cuántica ha dominado la física del siglo XX, y es con mucho la teoría científica de más éxito entre las existentes. Es indispensable para la comprensión de las partículas subatómicas, los átomos y los núcleos, las moléculas y el enlace químico, la estructura de los sólidos, los superconductores y los superfluidos, la conductividad eléctrica y térmica de los metales y los semiconductores, la estructura de, las estrellas y muchas otras cosas. Tiene aplicaciones prácticas que van desde el láser al microchip. ¡Todo esto procede de una teoría que a primera vista —y a segunda vista— parece absolutamente loca! Niels Bohr, uno de los fundadores de la mecánica cuántica, comentó en cierta ocasión que quienquiera que no se haya sentido conmocionado por la teoría no la ha entendido. : 

La lección de este libro que plantea un reto mayor es la última, que es una exposición de la física cuántica. No es exagerado decir que la mecánica cuántica ha dominado la física del siglo XX, y es con mucho la teoría científica de más éxito entre las existentes. Es indispensable para la comprensión de las partículas subatómicas, los átomos y los núcleos, las moléculas y el enlace químico, la estructura de los sólidos, los superconductores y los superfluidos, la conductividad eléctrica y térmica de los metales y los semiconductores, la estructura de, las estrellas y muchas otras cosas. Tiene aplicaciones prácticas que van desde el láser al microchip. ¡Todo esto procede de una teoría que a primera vista —y a segunda vista— parece absolutamente loca! Niels Bohr, uno de los fundadores de la mecánica cuántica, comentó en cierta ocasión que quienquiera que no se haya sentido conmocionado por la teoría no la ha entendido.

El problema es que las ideas cuánticas inciden en el propio corazón de lo que podríamos llamar realidad de sentido común. En particular, la idea de que objetos físicos tales como electrones o átomos disfrutan de una existencia independiente, con un conjunto completo de propiedades físicas en todo instante, es puesta en cuestión. Por ejemplo, un electrón no puede tener al mismo tiempo una posición en el espacio y una velocidad bien definidos. Si buscamos dónde está localizado el electrón, lo encontraremos en un lugar, y si medimos su velocidad obtendremos una respuesta precisa, pero no podemos hacer ambas observaciones a la vez. Ni tiene sentido atribuir valores precisos, aunque sean desconocidos, a la posición y la velocidad de un electrón en ausencia de un conjunto completo de observaciones. : 

El problema es que las ideas cuánticas inciden en el propio corazón de lo que podríamos llamar realidad de sentido común. En particular, la idea de que objetos físicos tales como electrones o átomos disfrutan de una existencia independiente, con un conjunto completo de propiedades físicas en todo instante, es puesta en cuestión. Por ejemplo, un electrón no puede tener al mismo tiempo una posición en el espacio y una velocidad bien definidos. Si buscamos dónde está localizado el electrón, lo encontraremos en un lugar, y si medimos su velocidad obtendremos una respuesta precisa, pero no podemos hacer ambas observaciones a la vez. Ni tiene sentido atribuir valores precisos, aunque sean desconocidos, a la posición y la velocidad de un electrón en ausencia de un conjunto completo de observaciones.

Este indeterminismo en la naturaleza misma de las partículas atómicas está resumido en el celebrado principio de incertidumbre de Heisenberg. Éste pone límites estrictos a la precisión con que pueden conocerse simultáneamente propiedades tales como la posición y la velocidad. Un valor preciso de la posición difumina el rango de valores posibles de la velocidad y viceversa. La borrosidad cuántica se muestra en la forma en que se mueven los electrones, fotones y otras partículas. Algunos experimentos pueden revelar cómo éstos toman caminos definidos en el espacio, al modo de balas que siguen trayectorias hacia un blanco. Pero otros montajes experimentales muestran que estas entidades pueden comportarse también como ondas, mostrando figuras características de difracción e interferencia. : 

Este indeterminismo en la naturaleza misma de las partículas atómicas está resumido en el celebrado principio de incertidumbre de Heisenberg. Éste pone límites estrictos a la precisión con que pueden conocerse simultáneamente propiedades tales como la posición y la velocidad. Un valor preciso de la posición difumina el rango de valores posibles de la velocidad y viceversa. La borrosidad cuántica se muestra en la forma en que se mueven los electrones, fotones y otras partículas. Algunos experimentos pueden revelar cómo éstos toman caminos definidos en el espacio, al modo de balas que siguen trayectorias hacia un blanco. Pero otros montajes experimentales muestran que estas entidades pueden comportarse también como ondas, mostrando figuras características de difracción e interferencia.

El análisis maestro de Feynman del famoso experimento de la «doble rendija», que plantea la «perturbadora» dualidad onda-partícula en su forma más aguda, ha llegado a convertirse en un clásico de la historia de la exposición científica. Con unas pocas ideas muy simples, Feynman se las arregla para llevar al lector al mismo corazón del misterio cuántico, y nos deja sorprendidos con la naturaleza paradójica de la realidad que expone. : 

El análisis maestro de Feynman del famoso experimento de la «doble rendija», que plantea la «perturbadora» dualidad onda-partícula en su forma más aguda, ha llegado a convertirse en un clásico de la historia de la exposición científica. Con unas pocas ideas muy simples, Feynman se las arregla para llevar al lector al mismo corazón del misterio cuántico, y nos deja sorprendidos con la naturaleza paradójica de la realidad que expone.

Aunque la mecánica cuántica había producido sus libros de texto a principios de los años treinta, es típico de Feynman que, siendo joven, él prefiriese reformular la teoría para sí mismo con un aspecto completamente nuevo. El método de Feynman tiene la virtud de que nos proporciona una imagen vívida de la maquinaria cuántica de la naturaleza en acción. La idea consiste en que la trayectoria de una partícula en el espacio no está en general bien definida en mecánica cuántica. Podemos imaginar un electrón que se mueve libremente, pongamos por caso, no viajando meramente en línea recta entre A y B, como sugeriría el sentido común, sino tomando muchos caminos zigzagueantes. Feynman nos invita a imaginar que el electrón explora de algún modo todas las rutas posibles, y en ausencia de una observación de qué camino ha tomado nosotros debemos suponer que todos estos caminos alternativos contribuyen de algún modo a la realidad. Así, cuando un electrón llega a un punto del espacio —digamos a una pantalla— deben integrarse conjuntamente muchas historias diferentes para crear este único suceso. : 

Aunque la mecánica cuántica había producido sus libros de texto a principios de los años treinta, es típico de Feynman que, siendo joven, él prefiriese reformular la teoría para sí mismo con un aspecto completamente nuevo. El método de Feynman tiene la virtud de que nos proporciona una imagen vívida de la maquinaria cuántica de la naturaleza en acción. La idea consiste en que la trayectoria de una partícula en el espacio no está en general bien definida en mecánica cuántica. Podemos imaginar un electrón que se mueve libremente, pongamos por caso, no viajando meramente en línea recta entre A y B, como sugeriría el sentido común, sino tomando muchos caminos zigzagueantes. Feynman nos invita a imaginar que el electrón explora de algún modo todas las rutas posibles, y en ausencia de una observación de qué camino ha tomado nosotros debemos suponer que todos estos caminos alternativos contribuyen de algún modo a la realidad. Así, cuando un electrón llega a un punto del espacio —digamos a una pantalla— deben integrarse conjuntamente muchas historias diferentes para crear este único suceso.

La denominada integral de camino de Feynman, o enfoque de la suma sobre historias para la mecánica cuántica, establece esta notable idea como un procedimiento matemático. Siguió siendo más o menos una curiosidad durante muchos años, pero a medida que los físicos llevaban la mecánica cuántica a sus límites —aplicándola a la gravitación, e incluso a la cosmología— la aproximación de Feynman resultó ofrecer la mejor herramienta de cálculo para describir un universo cuántico. La historia podrá juzgar perfectamente que, entre sus muchas contribuciones sobresalientes a la física, la formulación de la mecánica cuántica mediante integrales de camino es la más importante. : 

La denominada integral de camino de Feynman, o enfoque de la suma sobre historias para la mecánica cuántica, establece esta notable idea como un procedimiento matemático. Siguió siendo más o menos una curiosidad durante muchos años, pero a medida que los físicos llevaban la mecánica cuántica a sus límites —aplicándola a la gravitación, e incluso a la cosmología— la aproximación de Feynman resultó ofrecer la mejor herramienta de cálculo para describir un universo cuántico. La historia podrá juzgar perfectamente que, entre sus muchas contribuciones sobresalientes a la física, la formulación de la mecánica cuántica mediante integrales de camino es la más importante.

Muchas de las ideas discutidas en este volumen son profundamente filosóficas. Pero Feynman recelaba de los filósofos. Una vez tuve ocasión de tantearle sobre la naturaleza de las matemáticas y las leyes de la física, y sobre si podría considerarse que las leyes matemáticas abstractas gozaban de una existencia platónica independiente. Él dio una descripción animada y hábil de por qué lo parece así, pero pronto retrocedió cuando yo le presioné para que adoptase una postura filosófica concreta. Se mostró igualmente cauto cuando yo intenté sonsacarle sobre el tema del reduccionismo. Visto retrospectivamente, creo que Feynman no era, después de todo, desdeñoso de los problemas filosóficos. Pero, de la misma forma que fue capaz de hacer buena física matemática sin matemáticas sistemáticas, también produjo algunas buenas ideas filosóficas sin filosofía sistemática. Era el formalismo lo que le disgustaba, no el contenido. : 

Muchas de las ideas discutidas en este volumen son profundamente filosóficas. Pero Feynman recelaba de los filósofos. Una vez tuve ocasión de tantearle sobre la naturaleza de las matemáticas y las leyes de la física, y sobre si podría considerarse que las leyes matemáticas abstractas gozaban de una existencia platónica independiente. Él dio una descripción animada y hábil de por qué lo parece así, pero pronto retrocedió cuando yo le presioné para que adoptase una postura filosófica concreta. Se mostró igualmente cauto cuando yo intenté sonsacarle sobre el tema del reduccionismo. Visto retrospectivamente, creo que Feynman no era, después de todo, desdeñoso de los problemas filosóficos. Pero, de la misma forma que fue capaz de hacer buena física matemática sin matemáticas sistemáticas, también produjo algunas buenas ideas filosóficas sin filosofía sistemática. Era el formalismo lo que le disgustaba, no el contenido.

Es poco probable que el mundo vea otro Richard Feynman. Era un hombre de su tiempo. El estilo de Feynman funcionaba bien para un tema que estaba en trance de consolidar una revolución y embarcarse en la exploración de largo alcance de sus consecuencias. La física de la posguerra estaba segura en sus fundamentos; madura en sus estructuras teóricas, pero enormemente abierta para una explotación pionera. Feynman entró en un país de las maravillas de conceptos abstractos e imprimió su modo personal de pensar sobre muchos de ellos. Este libro proporciona una ojeada única a la mente de un ser humano notable. : 

Es poco probable que el mundo vea otro Richard Feynman. Era un hombre de su tiempo. El estilo de Feynman funcionaba bien para un tema que estaba en trance de consolidar una revolución y embarcarse en la exploración de largo alcance de sus consecuencias. La física de la posguerra estaba segura en sus fundamentos; madura en sus estructuras teóricas, pero enormemente abierta para una explotación pionera. Feynman entró en un país de las maravillas de conceptos abstractos e imprimió su modo personal de pensar sobre muchos de ellos. Este libro proporciona una ojeada única a la mente de un ser humano notable.

Paul Davies : 

Paul Davies

Septiembre de 1994 : 

Septiembre de 1994

Slide 65: 

— —

Prefacio especial : 

Prefacio especial

Hacia el final de su vida, la fama de Richard Feynman había trascendido los confines de la comunidad científica. Sus hazañas como miembro de la comisión investigadora del desastre de la lanzadera espacial Challenger le ganaron una amplia audiencia; igualmente, un libro de gran éxito sobre sus aventuras picarescas hizo de él un héroe popular casi de las proporciones de Albert Einstein. Pero ya en 1961, incluso antes de que su premio Nobel aumentara su notoriedad para el público general, Feynman era más que simplemente famoso entre los miembros de la comunidad científica: era legendario. Sin duda, el poder extraordinario de su magisterio ayudó a difundir y enriquecer la leyenda de Richard Feynman. : 

Hacia el final de su vida, la fama de Richard Feynman había trascendido los confines de la comunidad científica. Sus hazañas como miembro de la comisión investigadora del desastre de la lanzadera espacial Challenger le ganaron una amplia audiencia; igualmente, un libro de gran éxito sobre sus aventuras picarescas hizo de él un héroe popular casi de las proporciones de Albert Einstein. Pero ya en 1961, incluso antes de que su premio Nobel aumentara su notoriedad para el público general, Feynman era más que simplemente famoso entre los miembros de la comunidad científica: era legendario. Sin duda, el poder extraordinario de su magisterio ayudó a difundir y enriquecer la leyenda de Richard Feynman.

Realmente era un gran profesor, quizá el más grande de su era y la nuestra. Para Feynman, el aula era un teatro, y el conferenciante un actor, responsable de proporcionar espectáculo y fuegos artificiales tanto como hechos y cifras. Se movía por la tarima del aula, agitando los brazos, «una combinación imposible de físico teórico y artista de circo, todo movimiento corporal y efectos de sonido», escribió The New York Times. Ya se dirigiera a una audiencia de estudiantes, colegas, o público general, para aquellos que tuvieron la suerte de ver a Feynman en persona la experiencia fue en general poco convencional y siempre inolvidable, como lo era la propia persona. : 

Realmente era un gran profesor, quizá el más grande de su era y la nuestra. Para Feynman, el aula era un teatro, y el conferenciante un actor, responsable de proporcionar espectáculo y fuegos artificiales tanto como hechos y cifras. Se movía por la tarima del aula, agitando los brazos, «una combinación imposible de físico teórico y artista de circo, todo movimiento corporal y efectos de sonido», escribió The New York Times. Ya se dirigiera a una audiencia de estudiantes, colegas, o público general, para aquellos que tuvieron la suerte de ver a Feynman en persona la experiencia fue en general poco convencional y siempre inolvidable, como lo era la propia persona.

Era el maestro del gran espectáculo, decidido a captar la atención de toda la audiencia de la sala. Hace muchos años, impartió un curso sobre mecánica cuántica avanzada a un gran grupo compuesto por algunos pocos estudiantes graduados y la mayor parte del claustro de física del Caltech. Durante una de las lecciones, Feynman empezó explicando cómo se podían representar gráficamente ciertas integrales complicadas: el tiempo en este eje, el espacio en aquel eje, línea ondulada hacia esta línea recta, etc. Tras describir lo que se conoce en el mundo de la física como un diagrama de Feynman, él se volvió hacia la clase, exclamando triunfalmente: «¡Y esto se denomina EL DIAGRAMA!». Feynman había llegado al desenlace y la sala prorrumpió en un aplauso espontáneo. : 

Era el maestro del gran espectáculo, decidido a captar la atención de toda la audiencia de la sala. Hace muchos años, impartió un curso sobre mecánica cuántica avanzada a un gran grupo compuesto por algunos pocos estudiantes graduados y la mayor parte del claustro de física del Caltech. Durante una de las lecciones, Feynman empezó explicando cómo se podían representar gráficamente ciertas integrales complicadas: el tiempo en este eje, el espacio en aquel eje, línea ondulada hacia esta línea recta, etc. Tras describir lo que se conoce en el mundo de la física como un diagrama de Feynman, él se volvió hacia la clase, exclamando triunfalmente: «¡Y esto se denomina EL DIAGRAMA!». Feynman había llegado al desenlace y la sala prorrumpió en un aplauso espontáneo.

Durante muchos años posteriores a que se hubiesen impartido las lecciones que constituyen este libro, Feynman fue un ocasional profesor invitado para el curso de física dirigido a los novatos del Caltech. Naturalmente, su aparición tenía que mantenerse en secreto para que quedase sitio en el aula para los estudiantes matriculados. En una de estas lecciones el tema era el espacio-tiempo curvo, y Feynman hizo gala de su brillantez característica. Pero el momento inolvidable llegó al comienzo de la lección. Se acababa de descubrir la supernova de 1987 y Feynman estaba muy excitado por ello. Dijo: «Tycho Brahe tuvo su supernova, y Kepler tuvo la suya. Luego, no hubo ninguna durante 400 años. Pero ahora yo tengo la mía». La clase guardó silencio, y Feynman continuó: «Hay 1011 estrellas en la galaxia. Esto solía ser un número enorme. Pero es sólo cien mil millones. ¡Es menos que el déficit nacional! Solemos llamarlos números astronómicos. Ahora deberíamos llamarlos números económicos». La clase se deshizo en risas, y Feynman, habiendo cautivado a su audiencia, siguió con su lección. : 

Durante muchos años posteriores a que se hubiesen impartido las lecciones que constituyen este libro, Feynman fue un ocasional profesor invitado para el curso de física dirigido a los novatos del Caltech. Naturalmente, su aparición tenía que mantenerse en secreto para que quedase sitio en el aula para los estudiantes matriculados. En una de estas lecciones el tema era el espacio-tiempo curvo, y Feynman hizo gala de su brillantez característica. Pero el momento inolvidable llegó al comienzo de la lección. Se acababa de descubrir la supernova de 1987 y Feynman estaba muy excitado por ello. Dijo: «Tycho Brahe tuvo su supernova, y Kepler tuvo la suya. Luego, no hubo ninguna durante 400 años. Pero ahora yo tengo la mía». La clase guardó silencio, y Feynman continuó: «Hay 1011 estrellas en la galaxia. Esto solía ser un número enorme. Pero es sólo cien mil millones. ¡Es menos que el déficit nacional! Solemos llamarlos números astronómicos. Ahora deberíamos llamarlos números económicos». La clase se deshizo en risas, y Feynman, habiendo cautivado a su audiencia, siguió con su lección.

Dejando aparte el hombre-espectáculo, la técnica pedagógica de Feynman era sencilla. Un resumen de su filosofía educativa se encontró entre sus papeles en los archivos del Caltech, en una nota que había garabateado para sí mismo mientras estaba en Brasil en 1952: : 

Dejando aparte el hombre-espectáculo, la técnica pedagógica de Feynman era sencilla. Un resumen de su filosofía educativa se encontró entre sus papeles en los archivos del Caltech, en una nota que había garabateado para sí mismo mientras estaba en Brasil en 1952:

Piensa primero por qué quieres que los estudiantes aprendan el tema y qué quieres que sepan, y el método surgirá más o menos por sentido común. : 

Piensa primero por qué quieres que los estudiantes aprendan el tema y qué quieres que sepan, y el método surgirá más o menos por sentido común.

Lo que Feynman entendía por «sentido común» eran a menudo giros brillantes que captaban perfectamente la esencia del tema. En cierta ocasión, durante una conferencia pública, él estaba tratando de explicar por qué uno no debe verificar una idea utilizando los mismos datos que sugirieron dicha idea por primera vez. Alejándose en apariencia del tema, Feynman empezó a hablar sobre las placas de matrícula. «Fíjense ustedes, esta noche me ha sucedido la cosa más sorprendente. Me dirigía hacia aquí, a dar la conferencia, y entré en el aparcamiento. ¡Y no van a creer lo que sucedió! Vi un automóvil con la matrícula ARW 357. ¿Se lo pueden imaginar? De todos los millones de matrículas que hay en el estado, ¿cuál era la probabilidad de que yo viera esa matrícula concreta esta noche? ¡Sorprendente!». Un punto que incluso muchos científicos no pueden captar fue hecho evidente mediante el notable «sentido común» de Feynman. : 

Lo que Feynman entendía por «sentido común» eran a menudo giros brillantes que captaban perfectamente la esencia del tema. En cierta ocasión, durante una conferencia pública, él estaba tratando de explicar por qué uno no debe verificar una idea utilizando los mismos datos que sugirieron dicha idea por primera vez. Alejándose en apariencia del tema, Feynman empezó a hablar sobre las placas de matrícula. «Fíjense ustedes, esta noche me ha sucedido la cosa más sorprendente. Me dirigía hacia aquí, a dar la conferencia, y entré en el aparcamiento. ¡Y no van a creer lo que sucedió! Vi un automóvil con la matrícula ARW 357. ¿Se lo pueden imaginar? De todos los millones de matrículas que hay en el estado, ¿cuál era la probabilidad de que yo viera esa matrícula concreta esta noche? ¡Sorprendente!». Un punto que incluso muchos científicos no pueden captar fue hecho evidente mediante el notable «sentido común» de Feynman.

En 35 años en el Caltech (de 1952 a 1987), Feynman figuró como profesor en treinta y cuatro cursos. Veinticinco de ellos eran cursos avanzados, estrictamente limitados a estudiantes graduados, a menos que los no graduados pidiesen permiso para seguirlos (a menudo lo hacían, y el permiso era concedido casi siempre). El resto fueron principalmente cursos introductorios para graduados. Solamente una vez impartió Feynman cursos para estudiantes de licenciatura, y ésa fue la celebrada ocasión en los años académicos 1961-1962 y 1962-1963, con una breve reanudación en 1964, cuando impartió las clases que iban a convertirse en las Lecciones de física de Feynman. : 

En 35 años en el Caltech (de 1952 a 1987), Feynman figuró como profesor en treinta y cuatro cursos. Veinticinco de ellos eran cursos avanzados, estrictamente limitados a estudiantes graduados, a menos que los no graduados pidiesen permiso para seguirlos (a menudo lo hacían, y el permiso era concedido casi siempre). El resto fueron principalmente cursos introductorios para graduados. Solamente una vez impartió Feynman cursos para estudiantes de licenciatura, y ésa fue la celebrada ocasión en los años académicos 1961-1962 y 1962-1963, con una breve reanudación en 1964, cuando impartió las clases que iban a convertirse en las Lecciones de física de Feynman.

En esa época existía en el Caltech cierto consenso en que los estudiantes de primero y segundo curso se estaban sintiendo alejados, más que espoleados, por sus dos años de física obligatoria. Para remediar la situación, se le pidió a Feynman que planease una serie de lecciones para ser impartidas a los estudiantes a lo largo de dos años, primero a los novatos, y luego a estos mismos alumnos como estudiantes de segundo curso. Cuando él accedió, se decidió inmediatamente que las lecciones deberían ser transcritas para su publicación. Esa tarea resultó ser mucho más difícil de lo que cualquiera hubiera imaginado. Convertirlas en libros publicables requirió una enorme cantidad de trabajo por parte de sus colegas, así como del propio Feynman, quien hizo la edición final de cada capítulo. : 

En esa época existía en el Caltech cierto consenso en que los estudiantes de primero y segundo curso se estaban sintiendo alejados, más que espoleados, por sus dos años de física obligatoria. Para remediar la situación, se le pidió a Feynman que planease una serie de lecciones para ser impartidas a los estudiantes a lo largo de dos años, primero a los novatos, y luego a estos mismos alumnos como estudiantes de segundo curso. Cuando él accedió, se decidió inmediatamente que las lecciones deberían ser transcritas para su publicación. Esa tarea resultó ser mucho más difícil de lo que cualquiera hubiera imaginado. Convertirlas en libros publicables requirió una enorme cantidad de trabajo por parte de sus colegas, así como del propio Feynman, quien hizo la edición final de cada capítulo.

Y había que abordar todas las cuestiones prácticas que implica impartir un curso. Esta tarea se vio enormemente complicada por el hecho de que Feynman tenía sólo una vaga idea de lo que quería cubrir. Esto significaba que nadie sabía lo que Feynman iba a decir hasta que se pusiese delante del aula llena de estudiantes y lo dijera. Los profesores del Caltech que le ayudaban se las arreglarían entonces lo mejor que pudieran para trotar los detalles más mundanos, tales como hacer problemas para trabajar en casa. : 

Y había que abordar todas las cuestiones prácticas que implica impartir un curso. Esta tarea se vio enormemente complicada por el hecho de que Feynman tenía sólo una vaga idea de lo que quería cubrir. Esto significaba que nadie sabía lo que Feynman iba a decir hasta que se pusiese delante del aula llena de estudiantes y lo dijera. Los profesores del Caltech que le ayudaban se las arreglarían entonces lo mejor que pudieran para trotar los detalles más mundanos, tales como hacer problemas para trabajar en casa.

¿Por qué dedicó Feynman más de dos años a revolucionar la forma en que se enseñaba la física a los principiantes? Sólo podemos especular, pero probablemente había tres razones básicas. Una es que a él le gustaba tener una audiencia, y esto le proporcionó un auditorio mayor del que él solía tener en los cursos de graduados. La segunda era que él se preocupaba auténticamente por los estudiantes, y pensaba sencillamente que enseñar a los novatos era algo importante. La tercera, y quizá más importante, razón era el enorme desafío que suponía reformular la física, tal como él la entendía, de modo que pudiera presentarse a estudiantes jóvenes. Esta era su especialidad, y era el patrón por el que él medía si algo estaba realmente bien entendido. En cierta ocasión un miembro del claustro del Caltech pidió a Feynman que explicase por qué las partículas de espín un-medio obedecen a la estadística de Fermi‑Dirac. Él calibró a su audiencia perfectamente y dijo: «Prepararé una lección sobre este tema para los novatos». Pero unos días más tarde regresó y dijo: «Sabéis, no pude hacerlo. No pude reducirlo al nivel de los novatos. Esto significa que realmente no lo entendemos». : 

¿Por qué dedicó Feynman más de dos años a revolucionar la forma en que se enseñaba la física a los principiantes? Sólo podemos especular, pero probablemente había tres razones básicas. Una es que a él le gustaba tener una audiencia, y esto le proporcionó un auditorio mayor del que él solía tener en los cursos de graduados. La segunda era que él se preocupaba auténticamente por los estudiantes, y pensaba sencillamente que enseñar a los novatos era algo importante. La tercera, y quizá más importante, razón era el enorme desafío que suponía reformular la física, tal como él la entendía, de modo que pudiera presentarse a estudiantes jóvenes. Esta era su especialidad, y era el patrón por el que él medía si algo estaba realmente bien entendido. En cierta ocasión un miembro del claustro del Caltech pidió a Feynman que explicase por qué las partículas de espín un-medio obedecen a la estadística de Fermi‑Dirac. Él calibró a su audiencia perfectamente y dijo: «Prepararé una lección sobre este tema para los novatos». Pero unos días más tarde regresó y dijo: «Sabéis, no pude hacerlo. No pude reducirlo al nivel de los novatos. Esto significa que realmente no lo entendemos».

Esta especialidad de reducir ideas profundas a términos sencillos y comprensibles es evidente a lo largo de las Lecciones de física de Feynman, pero en ninguna parte lo es más que en su tratamiento de la mecánica cuántica. Para los que conocen el campo, lo que él ha hecho es evidente. Ha presentado, para los estudiantes principiantes, el método de integrales de camino, la técnica que él mismo concibió y que le permitió resolver algunos de los problemas más profundos de la física. Su propio trabajo utilizando integrales de camino, entre otros logros, le llevó al premio Nobel de 1965 que compartió con Julian Schwinger y Sin‑Itero Tomanaga. : 

Esta especialidad de reducir ideas profundas a términos sencillos y comprensibles es evidente a lo largo de las Lecciones de física de Feynman, pero en ninguna parte lo es más que en su tratamiento de la mecánica cuántica. Para los que conocen el campo, lo que él ha hecho es evidente. Ha presentado, para los estudiantes principiantes, el método de integrales de camino, la técnica que él mismo concibió y que le permitió resolver algunos de los problemas más profundos de la física. Su propio trabajo utilizando integrales de camino, entre otros logros, le llevó al premio Nobel de 1965 que compartió con Julian Schwinger y Sin‑Itero Tomanaga.

A través del lejano velo de la memoria, muchos de los estudiantes y profesores que asistieron a las lecciones han dicho que el haber seguido dos años de física con Feynman fue la experiencia de toda una vida. Pero no es esta la impresión que entonces se tuvo. Muchos de los estudiantes temían la clase, y a medida que el curso avanzaba la asistencia por parte de los estudiantes matriculados empezó a descender de forma alarmante. Pero al mismo tiempo, cada vez más profesores y estudiantes graduados empezaban a asistir. El aula seguía llena, y quizá Feynman nunca supo que él estaba perdiendo parte de su pretendida audiencia. Pero incluso en opinión de Feynman, su objetivo pedagógico no tuvo éxito. En el prefacio a las Lecciones de 1963, él escribió: «No creo que hiciera mucho por los estudiantes». Releyendo los libros, uno parece a veces ver a Feynman mirando por encima de su hombro, no a su audiencia joven, sino directamente a sus colegas, diciendo: «¡Miren eso! ¡Miren cómo aclaro esta cuestión! ¿No fue eso ingenioso?». Incluso cuando él pensaba que estaba explicando las cosas con lucidez a los novatos o estudiantes de segundo año, no eran realmente éstos quienes fueron capaces de beneficiarse de lo que él hacía. Eran sus colegas —científicos, físicos y profesores— quienes serían los principales beneficiarios de su soberbio logro, que fue nada menos que ver la física a través de la perspectiva fresca y dinámica de Richard Feynman. : 

A través del lejano velo de la memoria, muchos de los estudiantes y profesores que asistieron a las lecciones han dicho que el haber seguido dos años de física con Feynman fue la experiencia de toda una vida. Pero no es esta la impresión que entonces se tuvo. Muchos de los estudiantes temían la clase, y a medida que el curso avanzaba la asistencia por parte de los estudiantes matriculados empezó a descender de forma alarmante. Pero al mismo tiempo, cada vez más profesores y estudiantes graduados empezaban a asistir. El aula seguía llena, y quizá Feynman nunca supo que él estaba perdiendo parte de su pretendida audiencia. Pero incluso en opinión de Feynman, su objetivo pedagógico no tuvo éxito. En el prefacio a las Lecciones de 1963, él escribió: «No creo que hiciera mucho por los estudiantes». Releyendo los libros, uno parece a veces ver a Feynman mirando por encima de su hombro, no a su audiencia joven, sino directamente a sus colegas, diciendo: «¡Miren eso! ¡Miren cómo aclaro esta cuestión! ¿No fue eso ingenioso?». Incluso cuando él pensaba que estaba explicando las cosas con lucidez a los novatos o estudiantes de segundo año, no eran realmente éstos quienes fueron capaces de beneficiarse de lo que él hacía. Eran sus colegas —científicos, físicos y profesores— quienes serían los principales beneficiarios de su soberbio logro, que fue nada menos que ver la física a través de la perspectiva fresca y dinámica de Richard Feynman.

Feynman fue más que un gran profesor. Su don consistía en que era un extraordinario maestro de maestros. Si el objetivo de impartir las Lecciones de física fue el de preparar un aula llena de estudiantes de licenciatura para resolver problemas de física en los exámenes, no puede decirse que hubiese tenido un gran éxito. Más aún, si se pretendía que los libros sirviesen como textos introductorios para instituto, no puede decirse que haya conseguido su objetivo. De todas formas, los libros han sido traducidos a diez idiomas y están disponibles en cuatro ediciones bilingües. El propio Feynman creía que su contribución más importante a la física no sería la QED, o la teoría del helio superfluido, o los polarones o los partones. Su contribución más importante sería los tres libros rojos de las Lecciones de física de Feynman. Esta creencia justifica por completo esta edición conmemorativa de estos celebrados libros. : 

Feynman fue más que un gran profesor. Su don consistía en que era un extraordinario maestro de maestros. Si el objetivo de impartir las Lecciones de física fue el de preparar un aula llena de estudiantes de licenciatura para resolver problemas de física en los exámenes, no puede decirse que hubiese tenido un gran éxito. Más aún, si se pretendía que los libros sirviesen como textos introductorios para instituto, no puede decirse que haya conseguido su objetivo. De todas formas, los libros han sido traducidos a diez idiomas y están disponibles en cuatro ediciones bilingües. El propio Feynman creía que su contribución más importante a la física no sería la QED, o la teoría del helio superfluido, o los polarones o los partones. Su contribución más importante sería los tres libros rojos de las Lecciones de física de Feynman. Esta creencia justifica por completo esta edición conmemorativa de estos celebrados libros.

David L. Goldstein : 

David L. Goldstein

Gerry Neugebauer : 

Gerry Neugebauer

Instituto Tecnológico de California : 

Instituto Tecnológico de California

Abril de 1989 : 

Abril de 1989

Slide 85: 

— —

Prefacio de Feynman : 

Prefacio de Feynman De las Lecciones de Física

Estas son las lecciones de física que impartí durante los dos últimos años a los estudiantes de primero y segundo curso en el Caltech. Las lecciones no se han reproducido, por supuesto, de forma literal, sino que han sido revisadas, unas veces con gran extensión y otras con menos. Las lecciones constituyen sólo una parte del curso completo. Los 180 estudiantes del grupo se reunían en un aula grande dos veces por semana para asistir a estas lecciones y luego se dividían en grupos pequeños de 15 a 20 estudiantes en sesiones de repaso bajo la guía de un profesor ayudante. Además, había una sesión de laboratorio una vez a la semana. : 

Estas son las lecciones de física que impartí durante los dos últimos años a los estudiantes de primero y segundo curso en el Caltech. Las lecciones no se han reproducido, por supuesto, de forma literal, sino que han sido revisadas, unas veces con gran extensión y otras con menos. Las lecciones constituyen sólo una parte del curso completo. Los 180 estudiantes del grupo se reunían en un aula grande dos veces por semana para asistir a estas lecciones y luego se dividían en grupos pequeños de 15 a 20 estudiantes en sesiones de repaso bajo la guía de un profesor ayudante. Además, había una sesión de laboratorio una vez a la semana.

Con estas lecciones tratábamos de resolver un problema especial: mantener el interés de los muy entusiastas y bastante inteligentes estudiantes que salían de los institutos de enseñanza media e ingresaban en el Caltech. Ellos habían oído muchas cosas sobre lo interesante y excitante que es la física: la teoría de la relatividad, la mecánica cuántica y otras ideas modernas. Al terminar los dos años del curso anterior al nuestro, muchos parecían sentirse muy desanimados porque realmente se les habían presentado muy pocas ideas grandes, nuevas y modernas. Se les hacía estudiar planos inclinados, electrostática y cosas similares, y al cabo de dos años esto acababa por anquilosarles. El problema consistía en si podíamos o no hacer un curso que atrajese a los estudiantes más avanzados y con más interés, manteniendo su entusiasmo. : 

Con estas lecciones tratábamos de resolver un problema especial: mantener el interés de los muy entusiastas y bastante inteligentes estudiantes que salían de los institutos de enseñanza media e ingresaban en el Caltech. Ellos habían oído muchas cosas sobre lo interesante y excitante que es la física: la teoría de la relatividad, la mecánica cuántica y otras ideas modernas. Al terminar los dos años del curso anterior al nuestro, muchos parecían sentirse muy desanimados porque realmente se les habían presentado muy pocas ideas grandes, nuevas y modernas. Se les hacía estudiar planos inclinados, electrostática y cosas similares, y al cabo de dos años esto acababa por anquilosarles. El problema consistía en si podíamos o no hacer un curso que atrajese a los estudiantes más avanzados y con más interés, manteniendo su entusiasmo.

Las lecciones no pretendían en modo alguno dar un repaso completo a la física, pero son muy serias. Quise dirigirlas a los estudiantes más inteligentes de la clase y quería estar seguro, en la medida de lo posible, de que ni siquiera el estudiante más inteligente fuera capaz de absorber completamente todo lo que había en las lecciones, para lo que planteaba sugerencias de aplicaciones de las ideas y conceptos en varias direcciones al margen de la línea de ataque principal. Por esta razón, no obstante, puse mucho interés en que todas las afirmaciones fueran lo más precisas posible, en señalar en cada caso dónde encajaban las ecuaciones y las ideas en el cuerpo de la física, y cómo —cuando ellos aprendieran más— se modificarían las cosas. También creía que para tales estudiantes es importante señalar qué es lo que ellos deberían —si fueran suficientemente inteligentes— ser capaces de comprender por deducción a partir de lo que se había dicho antes, y qué es lo que se estaba planteando como algo nuevo. Cuando intervinieran nuevas ideas, yo trataría o bien de deducirlas si eran deducibles, o de explicar que eran ideas nuevas que no se basaban en cosas ya aprendidas y que no se suponía que fueran demostrables, sino que eran simplemente un añadido más. : 

Las lecciones no pretendían en modo alguno dar un repaso completo a la física, pero son muy serias. Quise dirigirlas a los estudiantes más inteligentes de la clase y quería estar seguro, en la medida de lo posible, de que ni siquiera el estudiante más inteligente fuera capaz de absorber completamente todo lo que había en las lecciones, para lo que planteaba sugerencias de aplicaciones de las ideas y conceptos en varias direcciones al margen de la línea de ataque principal. Por esta razón, no obstante, puse mucho interés en que todas las afirmaciones fueran lo más precisas posible, en señalar en cada caso dónde encajaban las ecuaciones y las ideas en el cuerpo de la física, y cómo —cuando ellos aprendieran más— se modificarían las cosas. También creía que para tales estudiantes es importante señalar qué es lo que ellos deberían —si fueran suficientemente inteligentes— ser capaces de comprender por deducción a partir de lo que se había dicho antes, y qué es lo que se estaba planteando como algo nuevo. Cuando intervinieran nuevas ideas, yo trataría o bien de deducirlas si eran deducibles, o de explicar que eran ideas nuevas que no se basaban en cosas ya aprendidas y que no se suponía que fueran demostrables, sino que eran simplemente un añadido más.

Al comenzar estas lecciones, yo suponía que los estudiantes tenían ciertos conocimientos cuando salían del instituto: óptica geométrica, ideas simples de química, y cosas de este tipo. Tampoco veía que hubiera ninguna razón para seguir las lecciones en un orden definido, en el sentido de que no se pudiera mencionar algo hasta que estuviera listo para discutirlo en detalle. Habría muchas cosas que mencionar, sin discusiones completas. Éstas vendrían más adelante, cuando la preparación hubiera llegado a un estadio más avanzado. Ejemplos de ello son las discusiones de la inductancia, y de los niveles energéticos, que inicialmente se exponen de forma muy cualitativa y más adelante se desarrollan con más extensión. : 

Al comenzar estas lecciones, yo suponía que los estudiantes tenían ciertos conocimientos cuando salían del instituto: óptica geométrica, ideas simples de química, y cosas de este tipo. Tampoco veía que hubiera ninguna razón para seguir las lecciones en un orden definido, en el sentido de que no se pudiera mencionar algo hasta que estuviera listo para discutirlo en detalle. Habría muchas cosas que mencionar, sin discusiones completas. Éstas vendrían más adelante, cuando la preparación hubiera llegado a un estadio más avanzado. Ejemplos de ello son las discusiones de la inductancia, y de los niveles energéticos, que inicialmente se exponen de forma muy cualitativa y más adelante se desarrollan con más extensión.

Al mismo tiempo que me estaba dirigiendo al estudiante más activo, también quería preocuparme del estudiante para quien los fuegos de artificio extra y las aplicaciones marginales son meramente intranquilizadores, y de quien no puede esperarse que aprenda la mayor parte del contenido de la lección. Para tal estudiante, yo quería que hubiese al menos un núcleo central o columna vertebral de material que él pudiera asimilar. Pretendía que no se pusiese nervioso aunque no entendiese todo el contenido de una lección. No esperaba que lo entendiese todo, sino los aspectos centrales y más directos. Se necesitaba, por supuesto, cierta inteligencia por su parte para ver cuáles son los teoremas y las ideas centrales, y cuáles son las cuestiones más avanzadas y las aplicaciones que sólo podría entender en años posteriores. : 

Al mismo tiempo que me estaba dirigiendo al estudiante más activo, también quería preocuparme del estudiante para quien los fuegos de artificio extra y las aplicaciones marginales son meramente intranquilizadores, y de quien no puede esperarse que aprenda la mayor parte del contenido de la lección. Para tal estudiante, yo quería que hubiese al menos un núcleo central o columna vertebral de material que él pudiera asimilar. Pretendía que no se pusiese nervioso aunque no entendiese todo el contenido de una lección. No esperaba que lo entendiese todo, sino los aspectos centrales y más directos. Se necesitaba, por supuesto, cierta inteligencia por su parte para ver cuáles son los teoremas y las ideas centrales, y cuáles son las cuestiones más avanzadas y las aplicaciones que sólo podría entender en años posteriores.

Había una seria dificultad para dar estas lecciones: tal como se impartía el curso, no había ninguna realimentación desde los estudiantes al profesor que indicase cómo se estaban asimilando las lecciones. Esta es realmente una dificultad muy seria, y yo no sé si las lecciones fueron realmente buenas. Todo era básicamente un experimento. Si lo volviera a hacer no lo haría de la misma forma; ¡espero no tener que hacerlo otra vez! Creo, sin embargo, que las cosas funcionaron —en lo que concierne a la física— de forma bastante satisfactoria en el primer año. : 

Había una seria dificultad para dar estas lecciones: tal como se impartía el curso, no había ninguna realimentación desde los estudiantes al profesor que indicase cómo se estaban asimilando las lecciones. Esta es realmente una dificultad muy seria, y yo no sé si las lecciones fueron realmente buenas. Todo era básicamente un experimento. Si lo volviera a hacer no lo haría de la misma forma; ¡espero no tener que hacerlo otra vez! Creo, sin embargo, que las cosas funcionaron —en lo que concierne a la física— de forma bastante satisfactoria en el primer año.

Del segundo año no quedé tan satisfecho. En la primera parte del curso, que trataba de la electricidad y del magnetismo, yo no fui capaz de encontrar ninguna manera realmente única o diferente de explicarlo, ninguna manera que fuese particularmente más excitante que la forma habitual de presentarlo. Así que yo no creo que hiciera mucho en las lecciones sobre electricidad y magnetismo. Para la parte final del segundo año, mi idea original consistía en seguir dando, tras la electricidad y el magnetismo, algunas lecciones más sobre las propiedades de los materiales, pero explicando fundamentalmente cosas como modos normales, soluciones de la ecuación de difusión, sistemas vibratorios, funciones ortogonales…, desarrollando así las primeras etapas de lo que normalmente se denominan «los métodos matemáticos de la física». Visto en retrospectiva, creo que si lo hiciese otra vez volvería a la idea original. Pero puesto que no estaba previsto que volviese a dar estas lecciones, se sugirió que podría ser una buena idea tratar de dar una introducción a la mecánica cuántica, que ustedes encontrarán en el volumen III. : 

Del segundo año no quedé tan satisfecho. En la primera parte del curso, que trataba de la electricidad y del magnetismo, yo no fui capaz de encontrar ninguna manera realmente única o diferente de explicarlo, ninguna manera que fuese particularmente más excitante que la forma habitual de presentarlo. Así que yo no creo que hiciera mucho en las lecciones sobre electricidad y magnetismo. Para la parte final del segundo año, mi idea original consistía en seguir dando, tras la electricidad y el magnetismo, algunas lecciones más sobre las propiedades de los materiales, pero explicando fundamentalmente cosas como modos normales, soluciones de la ecuación de difusión, sistemas vibratorios, funciones ortogonales…, desarrollando así las primeras etapas de lo que normalmente se denominan «los métodos matemáticos de la física». Visto en retrospectiva, creo que si lo hiciese otra vez volvería a la idea original. Pero puesto que no estaba previsto que volviese a dar estas lecciones, se sugirió que podría ser una buena idea tratar de dar una introducción a la mecánica cuántica, que ustedes encontrarán en el volumen III.

Está perfectamente claro que los estudiantes que van a graduarse en física pueden esperar hasta su tercer año para estudiar mecánica cuántica. Por otra parte, se adujo el argumento de que muchos de los estudiantes de nuestro curso estudiaban física como base para su interés primario en otros campos. Y la forma habitual de tratar la mecánica cuántica hace el tema casi inabordable para la gran mayoría de estudiantes porque necesitan mucho tiempo para aprenderlo. Sin embargo, en sus aplicaciones prácticas —especialmente en sus aplicaciones más complejas, tales como la ingeniería eléctrica y la química— no se utiliza realmente toda la herramienta del tratamiento mediante ecuaciones diferenciales. Por ello traté de describir los principios de la mecánica cuántica de una forma que no requiriese una formación previa en las matemáticas de las ecuaciones en derivadas parciales. Creo que el intento de presentar la mecánica cuántica de esta forma inversa es algo interesante incluso para un físico, por varias razones que se harán evidentes en las propias lecciones. Sin embargo, creo que el experimento en la parte de mecánica cuántica no tuvo un éxito completo, debido, en gran parte, a que yo no tuve realmente tiempo suficiente al final (por ejemplo, hubiera necesitado tres o cuatro lecciones más para tratar con más extensión temas tales como las bandas de energía y la dependencia espacial de las amplitudes). Además, nunca había presentado antes la materia de esta forma, de modo que la falta de realimentación fue particularmente grave. Ahora creo que la mecánica cuántica debería darse más tarde. Quizá tenga oportunidad de hacerlo de nuevo algún día. Entonces lo haré bien. : 

Está perfectamente claro que los estudiantes que van a graduarse en física pueden esperar hasta su tercer año para estudiar mecánica cuántica. Por otra parte, se adujo el argumento de que muchos de los estudiantes de nuestro curso estudiaban física como base para su interés primario en otros campos. Y la forma habitual de tratar la mecánica cuántica hace el tema casi inabordable para la gran mayoría de estudiantes porque necesitan mucho tiempo para aprenderlo. Sin embargo, en sus aplicaciones prácticas —especialmente en sus aplicaciones más complejas, tales como la ingeniería eléctrica y la química— no se utiliza realmente toda la herramienta del tratamiento mediante ecuaciones diferenciales. Por ello traté de describir los principios de la mecánica cuántica de una forma que no requiriese una formación previa en las matemáticas de las ecuaciones en derivadas parciales. Creo que el intento de presentar la mecánica cuántica de esta forma inversa es algo interesante incluso para un físico, por varias razones que se harán evidentes en las propias lecciones. Sin embargo, creo que el experimento en la parte de mecánica cuántica no tuvo un éxito completo, debido, en gran parte, a que yo no tuve realmente tiempo suficiente al final (por ejemplo, hubiera necesitado tres o cuatro lecciones más para tratar con más extensión temas tales como las bandas de energía y la dependencia espacial de las amplitudes). Además, nunca había presentado antes la materia de esta forma, de modo que la falta de realimentación fue particularmente grave. Ahora creo que la mecánica cuántica debería darse más tarde. Quizá tenga oportunidad de hacerlo de nuevo algún día. Entonces lo haré bien.

La razón de que no haya lecciones sobre cómo resolver problemas es que había sesiones de repaso. Aunque sí puse tres lecciones el primer año sobre resolución de problemas, éstas no están incluidas aquí. También hubo una lección sobre guía inercial que ciertamente debería ir tras la lección de sistemas rotatorios, pero, por desgracia, fue omitida. Las lecciones quinta y sexta se deben realmente a Matthew Sands, ya que yo estaba fuera de la ciudad. : 

La razón de que no haya lecciones sobre cómo resolver problemas es que había sesiones de repaso. Aunque sí puse tres lecciones el primer año sobre resolución de problemas, éstas no están incluidas aquí. También hubo una lección sobre guía inercial que ciertamente debería ir tras la lección de sistemas rotatorios, pero, por desgracia, fue omitida. Las lecciones quinta y sexta se deben realmente a Matthew Sands, ya que yo estaba fuera de la ciudad.

La cuestión, por supuesto, es saber si el experimento tuvo éxito. Mi punto de vista —que, sin embargo, no parece ser compartido por la mayoría de las personas que trabajaron con los estudiantes— es pesimista. No creo que haya servido de mucho a los estudiantes. Cuando veo la forma en que la mayoría de ellos trataron los problemas en los exámenes, pienso que el sistema es un fracaso. Por supuesto, mis amigos me señalan que hubo una o dos docenas de estudiantes que —de forma muy sorprendente— comprendieron casi todo lo que había en las lecciones, y que se mostraron muy activos en su trabajo con el material y en su interés por los puntos principales de una forma entusiasta y animada. Estas personas tienen ahora, creo yo, unos fundamentos de primer orden en física, y son, después de todo, los únicos a los que yo estaba tratando de captar. Pero «el poder de la instrucción no suele ser muy eficaz excepto en los felices casos en que es casi superfluo» (Gibbon). : 

La cuestión, por supuesto, es saber si el experimento tuvo éxito. Mi punto de vista —que, sin embargo, no parece ser compartido por la mayoría de las personas que trabajaron con los estudiantes— es pesimista. No creo que haya servido de mucho a los estudiantes. Cuando veo la forma en que la mayoría de ellos trataron los problemas en los exámenes, pienso que el sistema es un fracaso. Por supuesto, mis amigos me señalan que hubo una o dos docenas de estudiantes que —de forma muy sorprendente— comprendieron casi todo lo que había en las lecciones, y que se mostraron muy activos en su trabajo con el material y en su interés por los puntos principales de una forma entusiasta y animada. Estas personas tienen ahora, creo yo, unos fundamentos de primer orden en física, y son, después de todo, los únicos a los que yo estaba tratando de captar. Pero «el poder de la instrucción no suele ser muy eficaz excepto en los felices casos en que es casi superfluo» (Gibbon).

Además, yo no quería que ningún estudiante se quedase completamente rezagado, como quizá sucedió. Creo que una forma en la que podríamos ayudar más a los estudiantes sería dedicando un mayor esfuerzo al desarrollo de un conjunto de problemas que aclaren algunas de las ideas contenidas en las lecciones. Los problemas dan una buena oportunidad para completar el contenido de las lecciones y hacer más realistas, más completas y más asentadas en la mente las ideas que se han expuesto. : 

Además, yo no quería que ningún estudiante se quedase completamente rezagado, como quizá sucedió. Creo que una forma en la que podríamos ayudar más a los estudiantes sería dedicando un mayor esfuerzo al desarrollo de un conjunto de problemas que aclaren algunas de las ideas contenidas en las lecciones. Los problemas dan una buena oportunidad para completar el contenido de las lecciones y hacer más realistas, más completas y más asentadas en la mente las ideas que se han expuesto.

Creo, no obstante, que la solución a este problema de la educación no es otra que darse cuenta de que la mejor enseñanza sólo puede hacerse cuando hay una relación individual directa entre un estudiante y un buen profesor: una situación en la que el estudiante discute las ideas, piensa sobre las cosas y habla sobre las cosas. Es imposible aprender mucho asistiendo simplemente a una lección, o incluso haciendo simplemente los problemas que se proponen. Pero en nuestros tiempos tenemos tantos estudiantes a los que enseñar que debemos encontrar algún sustituto para este ideal. Quizá mis lecciones puedan aportar alguna contribución. Quizá en algún pequeño lugar donde exista una relación más personal entre profesores y estudiantes, puedan sacar alguna inspiración o algunas ideas de las lecciones. Quizá se diviertan reflexionando sobre ellas, o desarrollando más algunas de ellas. : 

Creo, no obstante, que la solución a este problema de la educación no es otra que darse cuenta de que la mejor enseñanza sólo puede hacerse cuando hay una relación individual directa entre un estudiante y un buen profesor: una situación en la que el estudiante discute las ideas, piensa sobre las cosas y habla sobre las cosas. Es imposible aprender mucho asistiendo simplemente a una lección, o incluso haciendo simplemente los problemas que se proponen. Pero en nuestros tiempos tenemos tantos estudiantes a los que enseñar que debemos encontrar algún sustituto para este ideal. Quizá mis lecciones puedan aportar alguna contribución. Quizá en algún pequeño lugar donde exista una relación más personal entre profesores y estudiantes, puedan sacar alguna inspiración o algunas ideas de las lecciones. Quizá se diviertan reflexionando sobre ellas, o desarrollando más algunas de ellas.

Richard P Feynman : 

Richard P Feynman

Junio de 1963 : 

Junio de 1963

Slide 101: 

— 1 —

Átomos en movimiento : 

Átomos en movimiento Introducción

Este curso de física en dos años se presenta partiendo de la base de que usted, el lector, va a ser físico. Este no es necesariamente su caso, por supuesto, ¡pero es lo que suponen todos los profesores en todas las disciplinas! Si usted va a ser un físico, tendrá mucho que estudiar: doscientos años del campo de conocimiento con más rápido desarrollo que existe. Tanto conocimiento, de hecho, que usted quizá piense que no puede aprenderlo todo en cuatro años, y realmente no puede hacerlo; ¡tendrá que ir a cursos para graduados! : 

Este curso de física en dos años se presenta partiendo de la base de que usted, el lector, va a ser físico. Este no es necesariamente su caso, por supuesto, ¡pero es lo que suponen todos los profesores en todas las disciplinas! Si usted va a ser un físico, tendrá mucho que estudiar: doscientos años del campo de conocimiento con más rápido desarrollo que existe. Tanto conocimiento, de hecho, que usted quizá piense que no puede aprenderlo todo en cuatro años, y realmente no puede hacerlo; ¡tendrá que ir a cursos para graduados!

Resulta bastante sorprendente el hecho de que, a pesar de la tremenda cantidad de trabajo realizado durante todo este tiempo, es posible condensar en gran medida la enorme masa de resultados; es decir, encontrar leyes que resuman todo nuestro conocimiento. Incluso así, las leyes son tan difíciles de captar que no es justo que usted empiece a explorar esta enorme disciplina sin algún tipo de mapa o panorámica de la relación entre las diversas disciplinas científicas. De acuerdo con estos comentarios preliminares, los primeros tres capítulos esbozarán la relación de la física con el resto de las ciencias, las relaciones de las ciencias entre sí, y el significado de la ciencia, lo que nos servirá para hacernos una «idea» del tema. : 

Resulta bastante sorprendente el hecho de que, a pesar de la tremenda cantidad de trabajo realizado durante todo este tiempo, es posible condensar en gran medida la enorme masa de resultados; es decir, encontrar leyes que resuman todo nuestro conocimiento. Incluso así, las leyes son tan difíciles de captar que no es justo que usted empiece a explorar esta enorme disciplina sin algún tipo de mapa o panorámica de la relación entre las diversas disciplinas científicas. De acuerdo con estos comentarios preliminares, los primeros tres capítulos esbozarán la relación de la física con el resto de las ciencias, las relaciones de las ciencias entre sí, y el significado de la ciencia, lo que nos servirá para hacernos una «idea» del tema.

Usted podría preguntarse por qué no podemos enseñar física exponiendo simplemente las leyes básicas en la página uno y mostrando luego cómo se aplican en todas las circunstancias posibles, tal como hacemos con la geometría euclidiana, donde establecemos los axiomas y luego hacemos todo tipo de deducciones. (¿De modo que, no contento con aprender física en cuatro años, quiere usted aprenderla en cuatro minutos?) No podemos hacerlo de esta forma por dos razones. La primera es que no conocemos aún todas las leyes básicas: la frontera entre el conocimiento y la ignorancia está en continua expansión. La segunda razón es que el enunciado correcto de las leyes de la física implica algunas ideas no muy familiares cuya descripción requiere matemáticas avanzadas. Por lo tanto, es necesaria una considerable cantidad de entrenamiento preparatorio incluso para aprender lo que significan las palabras. No, no es posible hacerlo de ese modo. Sólo podemos hacerlo fragmento a fragmento. : 

Usted podría preguntarse por qué no podemos enseñar física exponiendo simplemente las leyes básicas en la página uno y mostrando luego cómo se aplican en todas las circunstancias posibles, tal como hacemos con la geometría euclidiana, donde establecemos los axiomas y luego hacemos todo tipo de deducciones. (¿De modo que, no contento con aprender física en cuatro años, quiere usted aprenderla en cuatro minutos?) No podemos hacerlo de esta forma por dos razones. La primera es que no conocemos aún todas las leyes básicas: la frontera entre el conocimiento y la ignorancia está en continua expansión. La segunda razón es que el enunciado correcto de las leyes de la física implica algunas ideas no muy familiares cuya descripción requiere matemáticas avanzadas. Por lo tanto, es necesaria una considerable cantidad de entrenamiento preparatorio incluso para aprender lo que significan las palabras. No, no es posible hacerlo de ese modo. Sólo podemos hacerlo fragmento a fragmento.

Todo fragmento, o parte, de la totalidad de la naturaleza es siempre una mera aproximación a la verdad completa, o la verdad completa hasta donde la conocemos. De hecho, todo lo que sabemos es tan sólo algún tipo de aproximación porque sabemos que todavía no conocemos todas las leyes. Por lo tanto, las cosas deben ser aprendidas sólo para ser desaprendidas de nuevo o, lo que es más probable, para ser corregidas. : 

Todo fragmento, o parte, de la totalidad de la naturaleza es siempre una mera aproximación a la verdad completa, o la verdad completa hasta donde la conocemos. De hecho, todo lo que sabemos es tan sólo algún tipo de aproximación porque sabemos que todavía no conocemos todas las leyes. Por lo tanto, las cosas deben ser aprendidas sólo para ser desaprendidas de nuevo o, lo que es más probable, para ser corregidas.

El principio de la ciencia, casi la definición, es el siguiente: La prueba de todo conocimiento es el experimento. El experimento es el único juez de la «verdad» científica. Pero ¿cuál es la fuente del conocimiento? ¿De dónde proceden las leyes que van a ser puestas a prueba? El experimento por sí mismo ayuda a producir dichas leyes, en el sentido de que nos da sugerencias. Pero también se necesita imaginación para crear grandes generalizaciones a partir de estas sugerencias: conjeturar las maravillosas, y simples, pero muy extrañas estructuras que hay debajo de todas ellas, y luego experimentar para poner a prueba una vez más si hemos hecho la conjetura correcta. Este proceso de imaginación es tan difícil que hay una división del trabajo en la física: están los físicos teóricos, quienes imaginan, deducen y conjeturan nuevas leyes pero no experimentan, y luego están los físicos experimentales, que experimentan, imaginan, deducen y conjeturan. : 

El principio de la ciencia, casi la definición, es el siguiente: La prueba de todo conocimiento es el experimento. El experimento es el único juez de la «verdad» científica. Pero ¿cuál es la fuente del conocimiento? ¿De dónde proceden las leyes que van a ser puestas a prueba? El experimento por sí mismo ayuda a producir dichas leyes, en el sentido de que nos da sugerencias. Pero también se necesita imaginación para crear grandes generalizaciones a partir de estas sugerencias: conjeturar las maravillosas, y simples, pero muy extrañas estructuras que hay debajo de todas ellas, y luego experimentar para poner a prueba una vez más si hemos hecho la conjetura correcta. Este proceso de imaginación es tan difícil que hay una división del trabajo en la física: están los físicos teóricos, quienes imaginan, deducen y conjeturan nuevas leyes pero no experimentan, y luego están los físicos experimentales, que experimentan, imaginan, deducen y conjeturan.

Decíamos que las leyes de la naturaleza son aproximadas: que primero encontramos las «erróneas», y luego encontramos las «correctas». Ahora bien, ¿cómo puede ser «erróneo» un experimento? En primer lugar, de un modo trivial: si algo está mal en el aparato que usted no advirtió. Pero estas cosas se pueden arreglar fácilmente, y comprobar una y otra vez. Así, sin reparar en estos detalles menores, ¿cómo pueden ser erróneos los resultados de un experimento? Sólo siendo imprecisos. Por ejemplo, la masa de un objeto nunca parece cambiar: una peonza en movimiento tiene el mismo peso que una peonza en reposo. De este modo se concibió una «ley»: la masa es constante, independiente de la velocidad. Ahora se ha encontrado que esta «ley» es incorrecta. Resulta que la masa aumenta con la velocidad, pero un aumento apreciable requiere velocidades próximas a la de la luz. Una ley verdadera es: si un objeto se mueve con una velocidad menor que 100 kilómetros por segundo, su masa es constante dentro de un margen de una parte en un millón. En esta forma aproximada, esta es una ley correcta. Uno podría pensar que la nueva ley no supone ninguna diferencia significativa en la práctica. Bien, sí y no. Para velocidades ordinarias podemos ciertamente olvidarla y utilizar la sencilla ley de la masa constante como una buena aproximación. Pero si las velocidades son altas cometeremos errores, y cuanto más alta es la velocidad, mayor será el error. : 

Decíamos que las leyes de la naturaleza son aproximadas: que primero encontramos las «erróneas», y luego encontramos las «correctas». Ahora bien, ¿cómo puede ser «erróneo» un experimento? En primer lugar, de un modo trivial: si algo está mal en el aparato que usted no advirtió. Pero estas cosas se pueden arreglar fácilmente, y comprobar una y otra vez. Así, sin reparar en estos detalles menores, ¿cómo pueden ser erróneos los resultados de un experimento? Sólo siendo imprecisos. Por ejemplo, la masa de un objeto nunca parece cambiar: una peonza en movimiento tiene el mismo peso que una peonza en reposo. De este modo se concibió una «ley»: la masa es constante, independiente de la velocidad. Ahora se ha encontrado que esta «ley» es incorrecta. Resulta que la masa aumenta con la velocidad, pero un aumento apreciable requiere velocidades próximas a la de la luz. Una ley verdadera es: si un objeto se mueve con una velocidad menor que 100 kilómetros por segundo, su masa es constante dentro de un margen de una parte en un millón. En esta forma aproximada, esta es una ley correcta. Uno podría pensar que la nueva ley no supone ninguna diferencia significativa en la práctica. Bien, sí y no. Para velocidades ordinarias podemos ciertamente olvidarla y utilizar la sencilla ley de la masa constante como una buena aproximación. Pero si las velocidades son altas cometeremos errores, y cuanto más alta es la velocidad, mayor será el error.

Finalmente, y lo que es más interesante, filosóficamente estamos completamente equivocados con la ley aproximada. Nuestra imagen entera del mundo tiene que ser modificada incluso si los cambios en las masas son muy pequeños. Esto es algo muy peculiar de la filosofía, o las ideas, que subyacen en las leyes. Incluso un efecto muy pequeño requiere a veces cambios profundos en nuestras ideas. : 

Finalmente, y lo que es más interesante, filosóficamente estamos completamente equivocados con la ley aproximada. Nuestra imagen entera del mundo tiene que ser modificada incluso si los cambios en las masas son muy pequeños. Esto es algo muy peculiar de la filosofía, o las ideas, que subyacen en las leyes. Incluso un efecto muy pequeño requiere a veces cambios profundos en nuestras ideas.

Ahora bien, ¿qué deberíamos enseñar primero? ¿Deberíamos enseñar la ley correcta pero poco familiar con sus extrañas y difíciles ideas conceptuales, por ejemplo la teoría de la relatividad, el espacio-tiempo tetradimensional y cosas similares? ¿O deberíamos enseñar primero la sencilla ley de la «masa constante», que es sólo aproximada pero no implica ideas tan difíciles? La primera es más excitante, más maravillosa y más divertida, pero la segunda es más fácil de captar al principio, y es un primer paso hacia una comprensión real de la segunda idea. Esta cuestión surge una y otra vez al enseñar física. En diferentes momentos tendremos que resolverla de diferentes formas, pero en cada etapa vale la pena aprender lo que ahora se conoce, cuán aproximado es, cómo encaja en todo lo demás, y cómo puede cambiar cuando aprendamos más cosas. : 

Ahora bien, ¿qué deberíamos enseñar primero? ¿Deberíamos enseñar la ley correcta pero poco familiar con sus extrañas y difíciles ideas conceptuales, por ejemplo la teoría de la relatividad, el espacio-tiempo tetradimensional y cosas similares? ¿O deberíamos enseñar primero la sencilla ley de la «masa constante», que es sólo aproximada pero no implica ideas tan difíciles? La primera es más excitante, más maravillosa y más divertida, pero la segunda es más fácil de captar al principio, y es un primer paso hacia una comprensión real de la segunda idea. Esta cuestión surge una y otra vez al enseñar física. En diferentes momentos tendremos que resolverla de diferentes formas, pero en cada etapa vale la pena aprender lo que ahora se conoce, cuán aproximado es, cómo encaja en todo lo demás, y cómo puede cambiar cuando aprendamos más cosas.

Sigamos ahora con la panorámica, o mapa general, de nuestra comprensión de la ciencia actual (en particular, la física, pero también otras ciencias en la periferia), de modo que cuando nos con centremos más tarde en algún punto concreto tendremos alguna idea del contexto general, de por qué este punto particular es interesante y cómo encaja en la gran estructura. Así que ¿cuál es nuestra imagen global del mundo? : 

Sigamos ahora con la panorámica, o mapa general, de nuestra comprensión de la ciencia actual (en particular, la física, pero también otras ciencias en la periferia), de modo que cuando nos con centremos más tarde en algún punto concreto tendremos alguna idea del contexto general, de por qué este punto particular es interesante y cómo encaja en la gran estructura. Así que ¿cuál es nuestra imagen global del mundo? La materia está hecha de átomos

Si, por algún cataclismo, todo el conocimiento quedara destruido y sólo una sentencia pasara a las siguientes generaciones de criaturas, ¿qué enunciado contendría la máxima información en menos palabras? Yo creo que es la hipótesis atómica (o el hecho atómico, o como quiera que ustedes deseen llamarlo) según la cual todas las cosas están hechas de átomos: pequeñas partículas que se mueven en movimiento perpetuo, atrayéndose mutuamente cuando están a poca distancia, pero repeliéndose al ser apretadas unas contra otras. Verán ustedes que en esa simple sentencia hay una enorme cantidad de información acerca del mundo, con tal de que se aplique un poco de imaginación y reflexión. : 

Si, por algún cataclismo, todo el conocimiento quedara destruido y sólo una sentencia pasara a las siguientes generaciones de criaturas, ¿qué enunciado contendría la máxima información en menos palabras? Yo creo que es la hipótesis atómica (o el hecho atómico, o como quiera que ustedes deseen llamarlo) según la cual todas las cosas están hechas de átomos: pequeñas partículas que se mueven en movimiento perpetuo, atrayéndose mutuamente cuando están a poca distancia, pero repeliéndose al ser apretadas unas contra otras. Verán ustedes que en esa simple sentencia hay una enorme cantidad de información acerca del mundo, con tal de que se aplique un poco de imaginación y reflexión.

1.1 Agua ampliada mil millones de veces : 

1.1 Agua ampliada mil millones de veces

Para ilustrar la potencia de la idea atómica, supongamos que tenemos una gota de agua de 5 milímetros de diámetro. Si la miramos muy de cerca no vemos otra cosa que agua: agua uniforme y continua. Si la ampliamos con el mejor microscopio óptico disponible —aproximadamente dos mil veces— la gota de agua tendrá aproximadamente 10 metros de diámetro, el tamaño aproximado de una habitación grande, y si ahora la miráramos desde muy cerca, aún veríamos agua relativamente uniforme, pero aquí y allí nadan de un lado a otro pequeñas cosas con forma de un balón de rugby. Muy interesante. Son paramecios. Quizá ustedes se queden en este punto y sientan tanta curiosidad por los paramecios con sus cilios cimbreantes y cuerpos contorsionados que ya no sigan más adelante, excepto quizá para ampliar aún más los paramecios y ver qué hay en su interior. Esto, por supuesto, es un tema para la biología, pero por el momento continuaremos y miraremos aún más de cerca al propio material acuoso, ampliándolo dos mil veces más. Ahora la gota de agua se extiende hasta 20 kilómetros de diámetro, y si la miramos muy de cerca vemos una especie de hormigueo, algo que ya no tiene una apariencia lisa; se parece a una multitud en un partido de futbol vista a gran distancia. Para ver qué es este hormigueo, lo ampliaremos otras doscientas cincuenta veces y veremos algo similar a lo que se muestra en la figura 1.1. Esta es una imagen del agua ampliada mil millones de veces, pero idealizada en varios sentidos. En primer lugar, las partículas están dibujadas de una forma muy simple con bordes definidos, lo que no es exacto. En segundo lugar, y por simplicidad, están esbozadas casi esquemáticamente en una formación bidimensional, pero por supuesto se mueven en tres dimensiones. Nótese que hay dos tipos de «manchas» o círculos que representan los átomos de oxígeno (negros) e hidrógeno (blancos), y que a cada oxígeno hay unidos dos hidrógenos. (Cada grupo pequeño de un oxígeno con sus dos hidrógenos se denomina una molécula.) La imagen aún está más idealizada por el hecho de que las partículas reales en la naturaleza están agitándose y rebotando continuamente, girando y moviéndose unas alrededor de las otras. Ustedes tendrán que imaginarse esto como una imagen dinámica más que estática. Otra cosa que no puede ilustrarse en un dibujo es el hecho de que las partículas están «adheridas»: que se atraen entre sí, ésta atraída por esa otra, etc. El grupo entero está «pegado», por así decir. Por otra parte, las partículas no se interpenetran. Si ustedes tratan de comprimir dos de ellas y juntarlas demasiado, ellas se repelen. : 

Para ilustrar la potencia de la idea atómica, supongamos que tenemos una gota de agua de 5 milímetros de diámetro. Si la miramos muy de cerca no vemos otra cosa que agua: agua uniforme y continua. Si la ampliamos con el mejor microscopio óptico disponible —aproximadamente dos mil veces— la gota de agua tendrá aproximadamente 10 metros de diámetro, el tamaño aproximado de una habitación grande, y si ahora la miráramos desde muy cerca, aún veríamos agua relativamente uniforme, pero aquí y allí nadan de un lado a otro pequeñas cosas con forma de un balón de rugby. Muy interesante. Son paramecios. Quizá ustedes se queden en este punto y sientan tanta curiosidad por los paramecios con sus cilios cimbreantes y cuerpos contorsionados que ya no sigan más adelante, excepto quizá para ampliar aún más los paramecios y ver qué hay en su interior. Esto, por supuesto, es un tema para la biología, pero por el momento continuaremos y miraremos aún más de cerca al propio material acuoso, ampliándolo dos mil veces más. Ahora la gota de agua se extiende hasta 20 kilómetros de diámetro, y si la miramos muy de cerca vemos una especie de hormigueo, algo que ya no tiene una apariencia lisa; se parece a una multitud en un partido de futbol vista a gran distancia. Para ver qué es este hormigueo, lo ampliaremos otras doscientas cincuenta veces y veremos algo similar a lo que se muestra en la figura 1.1. Esta es una imagen del agua ampliada mil millones de veces, pero idealizada en varios sentidos. En primer lugar, las partículas están dibujadas de una forma muy simple con bordes definidos, lo que no es exacto. En segundo lugar, y por simplicidad, están esbozadas casi esquemáticamente en una formación bidimensional, pero por supuesto se mueven en tres dimensiones. Nótese que hay dos tipos de «manchas» o círculos que representan los átomos de oxígeno (negros) e hidrógeno (blancos), y que a cada oxígeno hay unidos dos hidrógenos. (Cada grupo pequeño de un oxígeno con sus dos hidrógenos se denomina una molécula.) La imagen aún está más idealizada por el hecho de que las partículas reales en la naturaleza están agitándose y rebotando continuamente, girando y moviéndose unas alrededor de las otras. Ustedes tendrán que imaginarse esto como una imagen dinámica más que estática. Otra cosa que no puede ilustrarse en un dibujo es el hecho de que las partículas están «adheridas»: que se atraen entre sí, ésta atraída por esa otra, etc. El grupo entero está «pegado», por así decir. Por otra parte, las partículas no se interpenetran. Si ustedes tratan de comprimir dos de ellas y juntarlas demasiado, ellas se repelen.

Los átomos tienen 1 o 2 x 10–8 cm de radio. Ahora bien, 10–8 cm se denomina un ångström (tan sólo otro nombre), de modo que decimos que tienen 1 o 2 ångströms (Å) de radio. Otra manera de recordar este tamaño es la siguiente: si se ampliara una manzana hasta el tamaño de la Tierra, entonces los átomos de la manzana tendrían aproximadamente el tamaño de la manzana original. : 

Los átomos tienen 1 o 2 x 10–8 cm de radio. Ahora bien, 10–8 cm se denomina un ångström (tan sólo otro nombre), de modo que decimos que tienen 1 o 2 ångströms (Å) de radio. Otra manera de recordar este tamaño es la siguiente: si se ampliara una manzana hasta el tamaño de la Tierra, entonces los átomos de la manzana tendrían aproximadamente el tamaño de la manzana original.

Imaginemos ahora esta gran gota de agua con todas estas partículas zigzagueantes adheridas y siguiéndose unas a otras. El agua mantiene su volumen; no se deshace, porque hay una atracción mutua entre las moléculas. Si la gota está en una pendiente, donde puede moverse de un lugar a otro, el agua fluirá, pero no desaparece simplemente —las cosas no se desvanecen— porque existe una atracción molecular. Este movimiento de agitación es lo que representamos como calor: cuando aumentamos la temperatura, aumentamos el movimiento. Si calentamos el agua, la agitación aumenta y aumenta el volumen entre los átomos, y si el calentamiento continúa llega un momento en que la atracción entre las moléculas no es suficiente para mantenerlas juntas y se disgregan separándose unas de otras. Por supuesto, así es como producimos vapor a partir del agua: aumentando la temperatura; las partículas se separan debido al incremento del movimiento. : 

Imaginemos ahora esta gran gota de agua con todas estas partículas zigzagueantes adheridas y siguiéndose unas a otras. El agua mantiene su volumen; no se deshace, porque hay una atracción mutua entre las moléculas. Si la gota está en una pendiente, donde puede moverse de un lugar a otro, el agua fluirá, pero no desaparece simplemente —las cosas no se desvanecen— porque existe una atracción molecular. Este movimiento de agitación es lo que representamos como calor: cuando aumentamos la temperatura, aumentamos el movimiento. Si calentamos el agua, la agitación aumenta y aumenta el volumen entre los átomos, y si el calentamiento continúa llega un momento en que la atracción entre las moléculas no es suficiente para mantenerlas juntas y se disgregan separándose unas de otras. Por supuesto, así es como producimos vapor a partir del agua: aumentando la temperatura; las partículas se separan debido al incremento del movimiento.

En la figura 1.2 tenemos una imagen del vapor. Esta imagen del vapor falla en un aspecto: a la presión atmosférica ordinaria podría haber tan sólo unas pocas moléculas en toda una habitación, y difícilmente llegaría a haber tres en una figura como esta. La mayoría de los cuadrados de este tamaño no contendrían ninguna, pero nosotros tenemos accidentalmente dos y media o tres en la imagen (sólo para que no estuviera completamente vacía). Ahora bien, en el caso del vapor vemos las moléculas características de forma más clara que en el agua. Por simplicidad, las moléculas se han dibujado de modo que haya un ángulo de 120° entre los átomos de hidrógeno. En realidad el ángulo es de 105° 3’, y la distancia entre el centro de un hidrógeno y el centro del oxígeno es de 0,957Å, de modo que conocemos muy bien esta molécula. : 

En la figura 1.2 tenemos una imagen del vapor. Esta imagen del vapor falla en un aspecto: a la presión atmosférica ordinaria podría haber tan sólo unas pocas moléculas en toda una habitación, y difícilmente llegaría a haber tres en una figura como esta. La mayoría de los cuadrados de este tamaño no contendrían ninguna, pero nosotros tenemos accidentalmente dos y media o tres en la imagen (sólo para que no estuviera completamente vacía). Ahora bien, en el caso del vapor vemos las moléculas características de forma más clara que en el agua. Por simplicidad, las moléculas se han dibujado de modo que haya un ángulo de 120° entre los átomos de hidrógeno. En realidad el ángulo es de 105° 3’, y la distancia entre el centro de un hidrógeno y el centro del oxígeno es de 0,957Å, de modo que conocemos muy bien esta molécula.

1.2 Vapor de agua : 

1.2 Vapor de agua

Veamos cuáles son algunas de las propiedades del vapor de agua o cualquier otro gas. Las moléculas, estando separadas unas de otras, rebotarán contra las paredes. Imaginemos una habitación con varias pelotas de tenis (un centenar más o menos) rebotando en movimiento perpetuo. Cuando bombardean la pared se produce un empuje sobre la misma. (Por supuesto, nosotros tendríamos que empujar la pared desde atrás para mantenerla fija.) Esto significa que el gas ejerce una fuerza agitatoria que nuestros torpes sentidos (al no estar nosotros mismos ampliados mil millones de veces) sienten sólo como un empuje promedio. Para confinar un gas debemos aplicar una presión. : 

Veamos cuáles son algunas de las propiedades del vapor de agua o cualquier otro gas. Las moléculas, estando separadas unas de otras, rebotarán contra las paredes. Imaginemos una habitación con varias pelotas de tenis (un centenar más o menos) rebotando en movimiento perpetuo. Cuando bombardean la pared se produce un empuje sobre la misma. (Por supuesto, nosotros tendríamos que empujar la pared desde atrás para mantenerla fija.) Esto significa que el gas ejerce una fuerza agitatoria que nuestros torpes sentidos (al no estar nosotros mismos ampliados mil millones de veces) sienten sólo como un empuje promedio. Para confinar un gas debemos aplicar una presión.

1.3 Recipiente estándar para mantener gases : 

1.3 Recipiente estándar para mantener gases

La figura 1.3 muestra un recipiente estándar para mantener gases (utilizado en todos los libros de texto), un cilindro provisto de un pistón. Ahora bien, no hay ninguna diferencia en cuáles sean las formas de las moléculas de agua, de modo que por simplicidad las dibujaremos como pelotas de tenis o puntos pequeños. Estas cosas están en movimiento perpetuo en todas direcciones. Tantas están golpeando el pistón superior continuamente que para evitar que se salgan del tanque por este golpeteo tendremos que sujetar el pistón mediante una cierta fuerza que llamamos presión (en realidad, la fuerza es la presión multiplicada por el área). Evidentemente, la fuerza es proporcional al área, pues si aumentamos el área pero mantenemos constante el número de moléculas por centímetro cúbico, aumentamos el número de colisiones con el pistón en la misma proporción en que aumenta el área. : 

La figura 1.3 muestra un recipiente estándar para mantener gases (utilizado en todos los libros de texto), un cilindro provisto de un pistón. Ahora bien, no hay ninguna diferencia en cuáles sean las formas de las moléculas de agua, de modo que por simplicidad las dibujaremos como pelotas de tenis o puntos pequeños. Estas cosas están en movimiento perpetuo en todas direcciones. Tantas están golpeando el pistón superior continuamente que para evitar que se salgan del tanque por este golpeteo tendremos que sujetar el pistón mediante una cierta fuerza que llamamos presión (en realidad, la fuerza es la presión multiplicada por el área). Evidentemente, la fuerza es proporcional al área, pues si aumentamos el área pero mantenemos constante el número de moléculas por centímetro cúbico, aumentamos el número de colisiones con el pistón en la misma proporción en que aumenta el área.

Pongamos ahora el doble de moléculas en este tanque, de modo que se duplique la densidad, y hagamos que tengan la misma velocidad, es decir, la misma temperatura. Entonces, en una buena aproximación, el número de colisiones se duplicará y, puesto que cada una de ellas será igual de «energética» que antes, la presión será proporcional a la densidad. Si consideramos la verdadera naturaleza de las fuerzas entre los átomos, cabría esperar una ligera disminución en la presión debida a la atracción entre los mismos, y un ligero incremento debido al volumen finito que ocupan. De todas formas, con una aproximación excelente, si la densidad es lo suficientemente baja para que no haya muchos átomos, la presión es proporcional a la densidad. : 

Pongamos ahora el doble de moléculas en este tanque, de modo que se duplique la densidad, y hagamos que tengan la misma velocidad, es decir, la misma temperatura. Entonces, en una buena aproximación, el número de colisiones se duplicará y, puesto que cada una de ellas será igual de «energética» que antes, la presión será proporcional a la densidad. Si consideramos la verdadera naturaleza de las fuerzas entre los átomos, cabría esperar una ligera disminución en la presión debida a la atracción entre los mismos, y un ligero incremento debido al volumen finito que ocupan. De todas formas, con una aproximación excelente, si la densidad es lo suficientemente baja para que no haya muchos átomos, la presión es proporcional a la densidad.

También podemos ver algo más: si aumentamos la temperatura sin cambiar la densidad del gas, o sea, si aumentamos la velocidad de los átomos, ¿qué sucederá con la presión? Bien, los átomos golpean con más fuerza porque se están moviendo con más rapidez, y además golpean con más frecuencia, de modo que la presión aumenta. Vean ustedes qué simples son las ideas de la teoría atómica. : 

También podemos ver algo más: si aumentamos la temperatura sin cambiar la densidad del gas, o sea, si aumentamos la velocidad de los átomos, ¿qué sucederá con la presión? Bien, los átomos golpean con más fuerza porque se están moviendo con más rapidez, y además golpean con más frecuencia, de modo que la presión aumenta. Vean ustedes qué simples son las ideas de la teoría atómica.

Consideremos otra situación. Supongamos que el pistón se mueve hacia adentro, de modo que los átomos son lentamente comprimidos en un espacio menor. ¿Qué sucede cuando un átomo golpea contra el pistón en movimiento? Evidentemente gana velocidad en la colisión. Ustedes pueden intentarlo haciendo rebotar una pelota de ping-pong en una pala que se mueve hacia ella, por ejemplo, y encontrarán que sale rebotada con más velocidad con la que chocó. (Ejemplo especial: si resulta que un átomo está en reposo y el pistón le golpea, el átomo ciertamente se moverá.) Así pues, los átomos están «más calientes» cuando vuelven del pistón que antes de que chocasen en él. Por consiguiente, todos los átomos que están en el recipiente habrán ganado velocidad. Esto significa que cuando comprimimos lentamente un gas, la temperatura del gas aumenta. De este modo, en una compresión lenta, un gas aumentará su temperatura, y en una expansión lenta disminuirá su temperatura. : 

Consideremos otra situación. Supongamos que el pistón se mueve hacia adentro, de modo que los átomos son lentamente comprimidos en un espacio menor. ¿Qué sucede cuando un átomo golpea contra el pistón en movimiento? Evidentemente gana velocidad en la colisión. Ustedes pueden intentarlo haciendo rebotar una pelota de ping-pong en una pala que se mueve hacia ella, por ejemplo, y encontrarán que sale rebotada con más velocidad con la que chocó. (Ejemplo especial: si resulta que un átomo está en reposo y el pistón le golpea, el átomo ciertamente se moverá.) Así pues, los átomos están «más calientes» cuando vuelven del pistón que antes de que chocasen en él. Por consiguiente, todos los átomos que están en el recipiente habrán ganado velocidad. Esto significa que cuando comprimimos lentamente un gas, la temperatura del gas aumenta. De este modo, en una compresión lenta, un gas aumentará su temperatura, y en una expansión lenta disminuirá su temperatura.

Volvamos ahora a nuestra gota de agua y consideremos otro aspecto. Supongamos que disminuimos la temperatura de nuestra gota de agua. Supongamos que la agitación de las moléculas de los átomos del agua está decreciendo continuamente. Sabemos que existen fuerzas atractivas entre los átomos, de modo que al cabo de algún tiempo ya no serán capaces de agitarse tanto. Lo que sucederá a temperaturas muy bajas está indicado en la figura 1.4: las moléculas se quedarán bloqueadas en una nueva estructura, el hielo. Este diagrama esquemático concreto del hielo no es muy bueno porque está en dos dimensiones, pero es cualitativamente correcto. El punto interesante es que en el material hay un lugar definido para cada átomo, y ustedes pueden apreciar fácilmente que si de un modo u otro mantuviéramos todos los átomos de un extremo de la gota en una cierta disposición, cada uno de ellos en un determinado lugar, entonces, debido a la estructura de las interconexiones, que es rígida, el otro extremo a kilómetros de distancia (en nuestra escala ampliada) tendría una posición definida. Así, si agarramos una aguja de hielo por un extremo, el otro extremo aguanta nuestra fuerza, a diferencia del caso del agua en el que la estructura se desmorona debido a la agitación creciente que hace que todos los átomos se muevan de formas diferentes. La diferencia entre sólidos y líquidos consiste entonces en que en un sólido los átomos están dispuestos en algún tipo de formación, llamada una red cristalina, y no tienen una posición aleatoria a grandes distancias; la posición de los átomos en un extremo del cristal está determinada por la de otros a millones de átomos de distancia al otro extremo del cristal. La figura 1.4 es una disposición imaginaria para el hielo pero, aunque contiene muchas de las características correctas del hielo, no es la disposición verdadera. Una de las características correctas es que hay una parte de la simetría que es hexagonal. Ustedes pueden ver que, si giramos la figura 120° alrededor de un eje, la imagen vuelve a ser la misma. Así pues, hay una simetría en el hielo que explica por qué los copos de nieve aparecen con seis lados. Otra cosa que podemos ver de la figura 1.4 es por qué el hielo se contrae cuando se funde. La estructura cristalina concreta del hielo mostrada aquí tiene muchos «agujeros» en su interior, como los tiene la verdadera estructura del hielo. Cuando la organización se desmorona, estos agujeros pueden ser ocupados por moléculas. La mayoría de las sustancias simples, con la excepción del agua y algún metal, se expanden al fundirse, porque los átomos están empaquetados más estrechamente en el sólido cristalino y al fundirse necesitan más sitio para agitarse; pero una estructura abierta colapsa, como es el caso del agua. : 

Volvamos ahora a nuestra gota de agua y consideremos otro aspecto. Supongamos que disminuimos la temperatura de nuestra gota de agua. Supongamos que la agitación de las moléculas de los átomos del agua está decreciendo continuamente. Sabemos que existen fuerzas atractivas entre los átomos, de modo que al cabo de algún tiempo ya no serán capaces de agitarse tanto. Lo que sucederá a temperaturas muy bajas está indicado en la figura 1.4: las moléculas se quedarán bloqueadas en una nueva estructura, el hielo. Este diagrama esquemático concreto del hielo no es muy bueno porque está en dos dimensiones, pero es cualitativamente correcto. El punto interesante es que en el material hay un lugar definido para cada átomo, y ustedes pueden apreciar fácilmente que si de un modo u otro mantuviéramos todos los átomos de un extremo de la gota en una cierta disposición, cada uno de ellos en un determinado lugar, entonces, debido a la estructura de las interconexiones, que es rígida, el otro extremo a kilómetros de distancia (en nuestra escala ampliada) tendría una posición definida. Así, si agarramos una aguja de hielo por un extremo, el otro extremo aguanta nuestra fuerza, a diferencia del caso del agua en el que la estructura se desmorona debido a la agitación creciente que hace que todos los átomos se muevan de formas diferentes. La diferencia entre sólidos y líquidos consiste entonces en que en un sólido los átomos están dispuestos en algún tipo de formación, llamada una red cristalina, y no tienen una posición aleatoria a grandes distancias; la posición de los átomos en un extremo del cristal está determinada por la de otros a millones de átomos de distancia al otro extremo del cristal. La figura 1.4 es una disposición imaginaria para el hielo pero, aunque contiene muchas de las características correctas del hielo, no es la disposición verdadera. Una de las características correctas es que hay una parte de la simetría que es hexagonal. Ustedes pueden ver que, si giramos la figura 120° alrededor de un eje, la imagen vuelve a ser la misma. Así pues, hay una simetría en el hielo que explica por qué los copos de nieve aparecen con seis lados. Otra cosa que podemos ver de la figura 1.4 es por qué el hielo se contrae cuando se funde. La estructura cristalina concreta del hielo mostrada aquí tiene muchos «agujeros» en su interior, como los tiene la verdadera estructura del hielo. Cuando la organización se desmorona, estos agujeros pueden ser ocupados por moléculas. La mayoría de las sustancias simples, con la excepción del agua y algún metal, se expanden al fundirse, porque los átomos están empaquetados más estrechamente en el sólido cristalino y al fundirse necesitan más sitio para agitarse; pero una estructura abierta colapsa, como es el caso del agua.

1.4 Hielo : 

1.4 Hielo

Ahora bien, aunque el hielo tiene una forma cristalina «rígida», su temperatura puede cambiar: el hielo tiene calor. Si queremos, podemos cambiar la cantidad de calor. ¿Qué es el calor en el caso del hielo? Los átomos no están en reposo. Están agitándose y vibrando. Así pues, incluso si hay un orden definido en el cristal —una estructura definida—, todos los átomos están vibrando «en su sitio». A medida que aumentamos la temperatura, vibran con una amplitud cada vez mayor, hasta que se salen de su sitio. Llamamos a esto fusión. A medida que disminuimos la temperatura, la vibración disminuye cada vez más hasta que, en el cero absoluto, se reduce a una cantidad mínima de vibración que pueden tener los átomos, aunque no nula. Esta cantidad de movimiento mínima que pueden tener los átomos no es suficiente para fundir una sustancia, con una excepción: el helio. El helio simplemente reduce los movimientos atómicos tanto como puede, pero incluso en el cero absoluto hay todavía movimiento suficiente para evitar la congelación. El helio no se congela ni siquiera en el cero absoluto, a menos que la presión sea tan grande como para hacer que los átomos se aplasten unos contra otros. Si aumentamos la presión, podemos hacer que se solidifique. : 

Ahora bien, aunque el hielo tiene una forma cristalina «rígida», su temperatura puede cambiar: el hielo tiene calor. Si queremos, podemos cambiar la cantidad de calor. ¿Qué es el calor en el caso del hielo? Los átomos no están en reposo. Están agitándose y vibrando. Así pues, incluso si hay un orden definido en el cristal —una estructura definida—, todos los átomos están vibrando «en su sitio». A medida que aumentamos la temperatura, vibran con una amplitud cada vez mayor, hasta que se salen de su sitio. Llamamos a esto fusión. A medida que disminuimos la temperatura, la vibración disminuye cada vez más hasta que, en el cero absoluto, se reduce a una cantidad mínima de vibración que pueden tener los átomos, aunque no nula. Esta cantidad de movimiento mínima que pueden tener los átomos no es suficiente para fundir una sustancia, con una excepción: el helio. El helio simplemente reduce los movimientos atómicos tanto como puede, pero incluso en el cero absoluto hay todavía movimiento suficiente para evitar la congelación. El helio no se congela ni siquiera en el cero absoluto, a menos que la presión sea tan grande como para hacer que los átomos se aplasten unos contra otros. Si aumentamos la presión, podemos hacer que se solidifique. Procesos atómicos

Hasta aquí la descripción de sólidos, líquidos y gases desde el punto de vista atómico. Sin embargo, la hipótesis atómica describe también procesos, y por ello vamos a ver ahora algunos procesos desde un punto de vista atómico. : 

Hasta aquí la descripción de sólidos, líquidos y gases desde el punto de vista atómico. Sin embargo, la hipótesis atómica describe también procesos, y por ello vamos a ver ahora algunos procesos desde un punto de vista atómico.

1.5 Agua evaporándose en el aire (=Oxígeno, o=Hidrógeno, ø=Nitrógeno) : 

1.5 Agua evaporándose en el aire (=Oxígeno, o=Hidrógeno, ø=Nitrógeno)

El primer proceso que consideraremos está asociado a la superficie del agua. ¿Qué sucede en la superficie del agua? Haremos ahora la imagen más complicada —y más realista— suponiendo que la superficie está al aire. La figura 1.5 muestra la superficie del agua al aire. Vemos las moléculas de agua como antes, formando un bloque de agua líquida, pero ahora vemos también la superficie del agua. Por encima de la superficie encontramos varias cosas: ante todo hay moléculas de agua, como en el vapor. Esto es vapor de agua, que siempre se encuentra por encima del agua líquida. (Hay un equilibrio entre el vapor de agua y el agua que describiremos más adelante.) Además encontramos otras moléculas: aquí dos átomos de oxígeno adheridos, formando una molécula de oxígeno, allí dos átomos de nitrógeno también adheridos para formar una molécula de nitrógeno. El aire consiste casi por completo en nitrógeno, oxígeno, algo de vapor de agua y cantidades menores de dióxido de carbono, argón y otras cosas. Así que por encima de la superficie del agua está el aire, un gas, que contiene algo de vapor de agua. Ahora bien, ¿qué está sucediendo en esta imagen? Las moléculas en el agua están en continua agitación. De cuando en cuando, una molécula en la superficie es golpeada con una fuerza algo mayor de lo normal, y es expulsada. Es difícil ver esto en la imagen porque es una imagen estática. Pero podemos imaginar que una molécula próxima a la superficie acaba de ser golpeada y se está desprendiendo, y quizá otra ha sido golpeada y se separa. Así, molécula a molécula, el agua desaparece: se evapora. Pero si cerramos el recipiente por arriba, al cabo de algún tiempo encontraremos un gran número de moléculas de agua entre las moléculas del aire. De cuando en cuando, una de estas moléculas de vapor llega hasta el agua y se queda adherida de nuevo. De este modo vemos que lo que parecía algo poco interesante y muerto —un vaso de agua con una tapa, que ha estado allí durante quizá veinte años— realmente contiene un fenómeno dinámico e interesante que prosigue continuamente. A nuestros ojos, nuestros torpes ojos, nada está cambiando, pero si pudiésemos verlo ampliado mil millones de veces veríamos que desde este punto de vista está cambiando continuamente: hay moléculas que están dejando la superficie y moléculas que regresan a ella. : 

El primer proceso que consideraremos está asociado a la superficie del agua. ¿Qué sucede en la superficie del agua? Haremos ahora la imagen más complicada —y más realista— suponiendo que la superficie está al aire. La figura 1.5 muestra la superficie del agua al aire. Vemos las moléculas de agua como antes, formando un bloque de agua líquida, pero ahora vemos también la superficie del agua. Por encima de la superficie encontramos varias cosas: ante todo hay moléculas de agua, como en el vapor. Esto es vapor de agua, que siempre se encuentra por encima del agua líquida. (Hay un equilibrio entre el vapor de agua y el agua que describiremos más adelante.) Además encontramos otras moléculas: aquí dos átomos de oxígeno adheridos, formando una molécula de oxígeno, allí dos átomos de nitrógeno también adheridos para formar una molécula de nitrógeno. El aire consiste casi por completo en nitrógeno, oxígeno, algo de vapor de agua y cantidades menores de dióxido de carbono, argón y otras cosas. Así que por encima de la superficie del agua está el aire, un gas, que contiene algo de vapor de agua. Ahora bien, ¿qué está sucediendo en esta imagen? Las moléculas en el agua están en continua agitación. De cuando en cuando, una molécula en la superficie es golpeada con una fuerza algo mayor de lo normal, y es expulsada. Es difícil ver esto en la imagen porque es una imagen estática. Pero podemos imaginar que una molécula próxima a la superficie acaba de ser golpeada y se está desprendiendo, y quizá otra ha sido golpeada y se separa. Así, molécula a molécula, el agua desaparece: se evapora. Pero si cerramos el recipiente por arriba, al cabo de algún tiempo encontraremos un gran número de moléculas de agua entre las moléculas del aire. De cuando en cuando, una de estas moléculas de vapor llega hasta el agua y se queda adherida de nuevo. De este modo vemos que lo que parecía algo poco interesante y muerto —un vaso de agua con una tapa, que ha estado allí durante quizá veinte años— realmente contiene un fenómeno dinámico e interesante que prosigue continuamente. A nuestros ojos, nuestros torpes ojos, nada está cambiando, pero si pudiésemos verlo ampliado mil millones de veces veríamos que desde este punto de vista está cambiando continuamente: hay moléculas que están dejando la superficie y moléculas que regresan a ella.

¿Por qué nosotros no vemos ningún cambio? ¡Porque están abandonando la superficie exactamente tantas moléculas como están volviendo a ella! A la larga «nada sucede». Si ahora quitamos la tapa del recipiente y soplamos para apartar el aire húmedo, reemplazándolo con aire seco, entonces el número de moléculas que abandonan la superficie es exactamente el mismo que antes, porque este número depende de la agitación del agua, pero el número de moléculas que regresan se reduce mucho debido a que hay muchas menos moléculas de agua por encima de la superficie del agua líquida. Por consiguiente, hay más moléculas saliendo que entrando, y el agua se evapora. De modo que si ustedes quieren evaporar agua ¡pongan en marcha el ventilador! : 

¿Por qué nosotros no vemos ningún cambio? ¡Porque están abandonando la superficie exactamente tantas moléculas como están volviendo a ella! A la larga «nada sucede». Si ahora quitamos la tapa del recipiente y soplamos para apartar el aire húmedo, reemplazándolo con aire seco, entonces el número de moléculas que abandonan la superficie es exactamente el mismo que antes, porque este número depende de la agitación del agua, pero el número de moléculas que regresan se reduce mucho debido a que hay muchas menos moléculas de agua por encima de la superficie del agua líquida. Por consiguiente, hay más moléculas saliendo que entrando, y el agua se evapora. De modo que si ustedes quieren evaporar agua ¡pongan en marcha el ventilador!

Aquí hay algo más: ¿qué moléculas se van? Cuando una molécula se va es debido a una acumulación accidental de energía algo mayor de la habitual, que es lo que se necesita para liberarla de las atracciones de sus vecinas. Así pues, puesto que las moléculas que se van tienen más energía que la media, las moléculas que quedan tienen en promedio un movimiento menor que el que tenían antes. De modo que el líquido se enfría poco a poco cuando se evapora. Por supuesto, si una molécula de vapor llega desde el aire hasta el agua que está por debajo, aparece de repente una gran atracción cuando la molécula se aproxima a la superficie. Esto acelera la partícula incidente y da lugar a una generación de calor. Así, cuando las moléculas dejan la superficie roban calor; cuando regresan generan calor. Por supuesto, cuando no hay evaporación neta el resultado es nulo: el agua no cambia de temperatura. Si soplamos en el agua para mantener una preponderancia continua en el número de moléculas que se evaporan, entonces el agua se enfría. Por lo tanto, ¡hay que soplar en la sopa para enfriarla! : 

Aquí hay algo más: ¿qué moléculas se van? Cuando una molécula se va es debido a una acumulación accidental de energía algo mayor de la habitual, que es lo que se necesita para liberarla de las atracciones de sus vecinas. Así pues, puesto que las moléculas que se van tienen más energía que la media, las moléculas que quedan tienen en promedio un movimiento menor que el que tenían antes. De modo que el líquido se enfría poco a poco cuando se evapora. Por supuesto, si una molécula de vapor llega desde el aire hasta el agua que está por debajo, aparece de repente una gran atracción cuando la molécula se aproxima a la superficie. Esto acelera la partícula incidente y da lugar a una generación de calor. Así, cuando las moléculas dejan la superficie roban calor; cuando regresan generan calor. Por supuesto, cuando no hay evaporación neta el resultado es nulo: el agua no cambia de temperatura. Si soplamos en el agua para mantener una preponderancia continua en el número de moléculas que se evaporan, entonces el agua se enfría. Por lo tanto, ¡hay que soplar en la sopa para enfriarla!

Ustedes comprenderán, por supuesto, que los procesos que acabamos de describir son más complicados de lo que hemos indicado. No sólo el agua penetra en el aire, sino que también, de cuando en cuando, una de las moléculas de oxígeno o nitrógeno penetrará y se «perderá» entre la masa de las moléculas de agua, y seguirá su camino dentro del agua. Así, el aire se disuelve en el agua; las moléculas de oxígeno y nitrógeno seguirán su camino dentro del agua y el agua contendrá aire. Si repentinamente extraemos el aire del recipiente, entonces las moléculas de aire dejarán el agua con más rapidez de la que entran en ella, y al hacerlo así formarán burbujas. Esto es muy malo para los buceadores, como ustedes quizá ya sepan. : 

Ustedes comprenderán, por supuesto, que los procesos que acabamos de describir son más complicados de lo que hemos indicado. No sólo el agua penetra en el aire, sino que también, de cuando en cuando, una de las moléculas de oxígeno o nitrógeno penetrará y se «perderá» entre la masa de las moléculas de agua, y seguirá su camino dentro del agua. Así, el aire se disuelve en el agua; las moléculas de oxígeno y nitrógeno seguirán su camino dentro del agua y el agua contendrá aire. Si repentinamente extraemos el aire del recipiente, entonces las moléculas de aire dejarán el agua con más rapidez de la que entran en ella, y al hacerlo así formarán burbujas. Esto es muy malo para los buceadores, como ustedes quizá ya sepan.

Vayamos ahora a otro proceso. En la figura 1.6 vemos, desde un punto de vista atómico, un sólido que se disuelve en agua. Si colocamos un cristal de sal en el agua, ¿qué sucederá? La sal es un sólido, un cristal, una disposición ordenada de «átomos de sal». : 

Vayamos ahora a otro proceso. En la figura 1.6 vemos, desde un punto de vista atómico, un sólido que se disuelve en agua. Si colocamos un cristal de sal en el agua, ¿qué sucederá? La sal es un sólido, un cristal, una disposición ordenada de «átomos de sal».

1.6 Sal disolviéndose en agua (O=Cloro o=Sodio) : 

1.6 Sal disolviéndose en agua (O=Cloro o=Sodio)

La figura 1.7 es una ilustración de la estructura tridimensional de la sal común, el cloruro sódico. Estrictamente hablando, el cristal no está compuesto de átomos, sino de lo que denominamos iones. Un ión es un átomo que o bien tiene algunos electrones de más o bien ha perdido algunos electrones. En un cristal de sal encontramos iones de cloro (átomos de cloro con un electrón extra) e iones de sodio (átomos de sodio a los que les falta un electrón). Todos los iones se adhieren por atracción eléctrica en la sal sólida, pero cuando los colocamos en el agua encontramos que, debido a las atracciones del oxígeno negativo y el hidrógeno positivo hacia los iones, algunos de los iones se agitan más libremente. : 

La figura 1.7 es una ilustración de la estructura tridimensional de la sal común, el cloruro sódico. Estrictamente hablando, el cristal no está compuesto de átomos, sino de lo que denominamos iones. Un ión es un átomo que o bien tiene algunos electrones de más o bien ha perdido algunos electrones. En un cristal de sal encontramos iones de cloro (átomos de cloro con un electrón extra) e iones de sodio (átomos de sodio a los que les falta un electrón). Todos los iones se adhieren por atracción eléctrica en la sal sólida, pero cuando los colocamos en el agua encontramos que, debido a las atracciones del oxígeno negativo y el hidrógeno positivo hacia los iones, algunos de los iones se agitan más libremente.

1.7 Distancia entre primeros vecinos d = a/2 : 

1.7 Distancia entre primeros vecinos d = a/2

En la figura 1.6 vemos un ión de cloro que se libera y otros átomos que flotan en el agua en forma de iones. Esta imagen se ha hecho con cierto cuidado. Nótese, por ejemplo, que los terminales de hidrógeno de las moléculas de agua suelen estar más cerca del ión cloro, mientras que cerca del ión sodio es mucho más probable encontrar el terminal de oxígeno, porque el sodio es positivo y el terminal de oxígeno del agua es negativo, y ambos se atraen eléctricamente. ¿Podemos decir a partir de esta imagen si la sal se está disolviendo en el agua o está cristalizando a partir del agua? Por supuesto que no podemos decirlo, porque mientras que algunos de los átomos están dejando el cristal, otros átomos se están volviendo a unir a él. Se trata de un proceso dinámico, igual que en el caso de la evaporación, y depende de si hay más o menos sal en el agua que la cantidad necesaria para el equilibrio. Por equilibrio entendemos esa situación en la que el ritmo al que los átomos están dejando el cristal ajusta exactamente con el ritmo al que están volviendo a él. Si no hubiese apenas sal en el agua, habría más átomos que lo dejan que átomos que regresan a él, y la sal se disolvería. Si, por el contrario, hubiera demasiados «átomos de sal», regresarían más de los que se van, y la sal estaría cristalizando. : 

En la figura 1.6 vemos un ión de cloro que se libera y otros átomos que flotan en el agua en forma de iones. Esta imagen se ha hecho con cierto cuidado. Nótese, por ejemplo, que los terminales de hidrógeno de las moléculas de agua suelen estar más cerca del ión cloro, mientras que cerca del ión sodio es mucho más probable encontrar el terminal de oxígeno, porque el sodio es positivo y el terminal de oxígeno del agua es negativo, y ambos se atraen eléctricamente. ¿Podemos decir a partir de esta imagen si la sal se está disolviendo en el agua o está cristalizando a partir del agua? Por supuesto que no podemos decirlo, porque mientras que algunos de los átomos están dejando el cristal, otros átomos se están volviendo a unir a él. Se trata de un proceso dinámico, igual que en el caso de la evaporación, y depende de si hay más o menos sal en el agua que la cantidad necesaria para el equilibrio. Por equilibrio entendemos esa situación en la que el ritmo al que los átomos están dejando el cristal ajusta exactamente con el ritmo al que están volviendo a él. Si no hubiese apenas sal en el agua, habría más átomos que lo dejan que átomos que regresan a él, y la sal se disolvería. Si, por el contrario, hubiera demasiados «átomos de sal», regresarían más de los que se van, y la sal estaría cristalizando.

Mencionemos de paso que el concepto de una molécula de una sustancia es sólo aproximado y existe solamente para cierta clase de sustancias. Es evidente en el caso del agua que los tres átomos están realmente adheridos. No es tan claro en el caso del cloruro sódico en el sólido. Hay tan sólo una disposición de iones sodio y cloro en una estructura cúbica. No hay manera natural de agruparlos como «moléculas de sal». : 

Mencionemos de paso que el concepto de una molécula de una sustancia es sólo aproximado y existe solamente para cierta clase de sustancias. Es evidente en el caso del agua que los tres átomos están realmente adheridos. No es tan claro en el caso del cloruro sódico en el sólido. Hay tan sólo una disposición de iones sodio y cloro en una estructura cúbica. No hay manera natural de agruparlos como «moléculas de sal».

Volviendo a nuestra discusión de la solución y la precipitación, si aumentamos la temperatura de la solución salina se incrementa el ritmo al que los átomos se van, y también lo hace el ritmo al que los átomos vuelven. Resulta muy difícil, en general, predecir qué es lo que va a pasar, si se va a disolver más o menos sólido. La mayoría de las sustancias se disuelven más, pero algunas sustancias se disuelven menos a medida que la temperatura aumenta. : 

Volviendo a nuestra discusión de la solución y la precipitación, si aumentamos la temperatura de la solución salina se incrementa el ritmo al que los átomos se van, y también lo hace el ritmo al que los átomos vuelven. Resulta muy difícil, en general, predecir qué es lo que va a pasar, si se va a disolver más o menos sólido. La mayoría de las sustancias se disuelven más, pero algunas sustancias se disuelven menos a medida que la temperatura aumenta. Reacciones químicas

En todos los procesos que se han descrito hasta ahora, los átomos y los iones no han cambiado de compañeros, pero por supuesto hay circunstancias en las que los átomos cambian sus combinaciones para formar nuevas moléculas. Esto se ilustra en la figura 1.8. Un proceso en el que tiene lugar una recombinación de los compañeros atómicos es lo que denominamos una reacción química. : 

En todos los procesos que se han descrito hasta ahora, los átomos y los iones no han cambiado de compañeros, pero por supuesto hay circunstancias en las que los átomos cambian sus combinaciones para formar nuevas moléculas. Esto se ilustra en la figura 1.8. Un proceso en el que tiene lugar una recombinación de los compañeros atómicos es lo que denominamos una reacción química.

1.8 Carbono quemándose en oxígeno : 

1.8 Carbono quemándose en oxígeno

Los otros procesos descritos hasta ahora se denominan procesos físicos, pero no hay una distinción tajante entre ambos tipos de procesos. (La naturaleza no se preocupa de cómo lo llamemos, simplemente sigue trabajando.) Se supone que esta figura representa carbono quemándose en oxígeno. En el caso del oxígeno, dos átomos de oxígeno están adheridos muy fuertemente. (¿Por qué no se adhieren tres o incluso cuatro átomos? Esta es una de las características muy peculiares de tales procesos atómicos. Los átomos son muy especiales: les gustan ciertos compañeros concretos, ciertas direcciones concretas, y así sucesivamente. La tarea de la física consiste en analizar por qué cada uno de ellos quiere lo que quiere. En cualquier caso, dos átomos de oxígeno forman, saturados y felices, una molécula.) : 

Los otros procesos descritos hasta ahora se denominan procesos físicos, pero no hay una distinción tajante entre ambos tipos de procesos. (La naturaleza no se preocupa de cómo lo llamemos, simplemente sigue trabajando.) Se supone que esta figura representa carbono quemándose en oxígeno. En el caso del oxígeno, dos átomos de oxígeno están adheridos muy fuertemente. (¿Por qué no se adhieren tres o incluso cuatro átomos? Esta es una de las características muy peculiares de tales procesos atómicos. Los átomos son muy especiales: les gustan ciertos compañeros concretos, ciertas direcciones concretas, y así sucesivamente. La tarea de la física consiste en analizar por qué cada uno de ellos quiere lo que quiere. En cualquier caso, dos átomos de oxígeno forman, saturados y felices, una molécula.)

Se supone que los átomos de carbono están en un cristal sólido (que podría ser grafito o diamante). Ahora, por ejemplo, una de las moléculas de oxígeno puede llegar al carbono, y cada uno de sus átomos puede recoger un átomo de carbono y salir en una nueva combinación —«carbono-oxígeno»—, que es una molécula de un gas denominado monóxido de carbono. Se le da el nombre químico CO. Es muy simple: las letras «CO» son prácticamente una imagen de dicha molécula. Pero el carbono atrae al oxígeno con mucha más fuerza que el oxígeno atrae al oxígeno o que el carbono atrae al carbono. Por lo tanto, en este proceso el oxígeno puede llegar con sólo una pequeña energía, pero el oxígeno y el carbono saldrán juntos con una enorme violencia y conmoción, y cualquier cosa que haya cerca de ellos recogerá la energía. Entonces se genera una gran cantidad de energía de movimiento, energía cinética. Esto, por supuesto, es la combustión; estamos obteniendo calor a partir de la combinación de oxígeno y carbono. El calor está ordinariamente en forma de movimiento molecular del gas caliente, pero en ciertas circunstancias puede ser tan enorme que genere luz. Así es cómo se obtienen las llamas. : 

Se supone que los átomos de carbono están en un cristal sólido (que podría ser grafito o diamante). Ahora, por ejemplo, una de las moléculas de oxígeno puede llegar al carbono, y cada uno de sus átomos puede recoger un átomo de carbono y salir en una nueva combinación —«carbono-oxígeno»—, que es una molécula de un gas denominado monóxido de carbono. Se le da el nombre químico CO. Es muy simple: las letras «CO» son prácticamente una imagen de dicha molécula. Pero el carbono atrae al oxígeno con mucha más fuerza que el oxígeno atrae al oxígeno o que el carbono atrae al carbono. Por lo tanto, en este proceso el oxígeno puede llegar con sólo una pequeña energía, pero el oxígeno y el carbono saldrán juntos con una enorme violencia y conmoción, y cualquier cosa que haya cerca de ellos recogerá la energía. Entonces se genera una gran cantidad de energía de movimiento, energía cinética. Esto, por supuesto, es la combustión; estamos obteniendo calor a partir de la combinación de oxígeno y carbono. El calor está ordinariamente en forma de movimiento molecular del gas caliente, pero en ciertas circunstancias puede ser tan enorme que genere luz. Así es cómo se obtienen las llamas.

Además, el monóxido de carbono no está totalmente satisfecho. Es posible que se una a otro oxígeno, de modo que podríamos tener una reacción mucho más complicada en la que el oxígeno se está combinando con el carbono y al mismo tiempo tiene lugar una colisión con una molécula de monóxido de carbono. Un átomo de oxígeno podría unirse al CO y formar finalmente una molécula, compuesta de un carbono y dos oxígenos, que se designa CO2 y se denomina dióxido de carbono. Si quemamos el carbono con muy poco oxígeno en una reacción muy rápida (por ejemplo, en un motor de automóvil, donde la explosión es tan rápida que no hay tiempo para hacer dióxido de carbono), se forma una gran cantidad de monóxido de carbono. En muchas de tales recombinaciones se libera una cantidad muy grande de energía, que produce explosiones, llamas, etc., dependiendo de las reacciones. Los químicos han estudiado estas ordenaciones de los átomos y han encontrado que toda sustancia es algún tipo de disposición de átomos. : 

Además, el monóxido de carbono no está totalmente satisfecho. Es posible que se una a otro oxígeno, de modo que podríamos tener una reacción mucho más complicada en la que el oxígeno se está combinando con el carbono y al mismo tiempo tiene lugar una colisión con una molécula de monóxido de carbono. Un átomo de oxígeno podría unirse al CO y formar finalmente una molécula, compuesta de un carbono y dos oxígenos, que se designa CO2 y se denomina dióxido de carbono. Si quemamos el carbono con muy poco oxígeno en una reacción muy rápida (por ejemplo, en un motor de automóvil, donde la explosión es tan rápida que no hay tiempo para hacer dióxido de carbono), se forma una gran cantidad de monóxido de carbono. En muchas de tales recombinaciones se libera una cantidad muy grande de energía, que produce explosiones, llamas, etc., dependiendo de las reacciones. Los químicos han estudiado estas ordenaciones de los átomos y han encontrado que toda sustancia es algún tipo de disposición de átomos.

1.9 Aroma de violetas : 

1.9 Aroma de violetas

Para ilustrar esta idea, consideremos otro ejemplo. Si entramos en un campo de pequeñas violetas, enseguida sabemos qué es «ese olor». Es algún tipo de molécula, o disposición de átomos, que se ha abierto camino hasta el interior de nuestras fosas nasales. Antes de nada, ¿cómo se abrió camino? Eso es bastante fácil. Si el olor es algún tipo de molécula en el aire, agitándose y siendo golpeada desde todas direcciones, podría haber llegado accidentalmente al interior de la nariz. Ciertamente no tiene ningún deseo particular de entrar en nuestra nariz. Es simplemente una indefensa parte de una multitud zigzagueante de moléculas, y en su errar sin rumbo esta porción concreta de materia acaba encontrándose en nuestra nariz. : 

Para ilustrar esta idea, consideremos otro ejemplo. Si entramos en un campo de pequeñas violetas, enseguida sabemos qué es «ese olor». Es algún tipo de molécula, o disposición de átomos, que se ha abierto camino hasta el interior de nuestras fosas nasales. Antes de nada, ¿cómo se abrió camino? Eso es bastante fácil. Si el olor es algún tipo de molécula en el aire, agitándose y siendo golpeada desde todas direcciones, podría haber llegado accidentalmente al interior de la nariz. Ciertamente no tiene ningún deseo particular de entrar en nuestra nariz. Es simplemente una indefensa parte de una multitud zigzagueante de moléculas, y en su errar sin rumbo esta porción concreta de materia acaba encontrándose en nuestra nariz.

Ahora los químicos pueden tomar moléculas especiales como las del aroma de las violetas y analizarlas y decirnos la disposición exacta de los átomos en el espacio. Sabemos que la molécula de dióxido de carbono es recta y simétrica: O–C–O. (Esto también puede determinarse fácilmente con métodos físicos.) Sin embargo, incluso para las enormemente más complicadas disposiciones de átomos que hay en la química es posible, mediante un largo y notable proceso de trabajo detectivesco, encontrar las disposiciones de los átomos. La figura 1.9 es una imagen del aire cerca de una violeta; de nuevo encontramos nitrógeno y oxígeno en el aire, y vapor de agua. (¿Por qué hay vapor de agua? Porque la violeta está húmeda. Todas las plantas transpiran.) Sin embargo, vemos también en la figura 1.10 un «monstruo» compuesto de átomos de carbono, átomos de hidrógeno y átomos de oxígeno, que han elegido una cierta estructura concreta en la que disponerse. Es una disposición mucho más complicada que la del dióxido de carbono; de hecho, es una disposición enormemente complicada. Por desgracia, no podemos representar todo lo que de verdad se conoce sobre ella químicamente, porque la disposición precisa de todos los átomos se conoce realmente en tres dimensiones, mientras que nuestra imagen es sólo bidimensional. Los seis carbonos que forman un anillo no forman un anillo plano, sino un tipo de anillo «arrugado». Se conocen todos los ángulos y las distancias. Así pues, una fórmula química es simplemente una imagen de semejante molécula. Cuando el químico escribe una cosa semejante en la pizarra está tratando de «dibujar», hablando grosso modo, en dos dimensiones. Por ejemplo, vemos un «anillo» de seis carbonos, y una «cadena» de carbonos que cuelga en un extremo, con un oxígeno en el segundo lugar a partir del extremo, tres hidrógenos unidos al carbono, dos carbonos y tres hidrógenos adheridos aquí, etc. : 

Ahora los químicos pueden tomar moléculas especiales como las del aroma de las violetas y analizarlas y decirnos la disposición exacta de los átomos en el espacio. Sabemos que la molécula de dióxido de carbono es recta y simétrica: O–C–O. (Esto también puede determinarse fácilmente con métodos físicos.) Sin embargo, incluso para las enormemente más complicadas disposiciones de átomos que hay en la química es posible, mediante un largo y notable proceso de trabajo detectivesco, encontrar las disposiciones de los átomos. La figura 1.9 es una imagen del aire cerca de una violeta; de nuevo encontramos nitrógeno y oxígeno en el aire, y vapor de agua. (¿Por qué hay vapor de agua? Porque la violeta está húmeda. Todas las plantas transpiran.) Sin embargo, vemos también en la figura 1.10 un «monstruo» compuesto de átomos de carbono, átomos de hidrógeno y átomos de oxígeno, que han elegido una cierta estructura concreta en la que disponerse. Es una disposición mucho más complicada que la del dióxido de carbono; de hecho, es una disposición enormemente complicada. Por desgracia, no podemos representar todo lo que de verdad se conoce sobre ella químicamente, porque la disposición precisa de todos los átomos se conoce realmente en tres dimensiones, mientras que nuestra imagen es sólo bidimensional. Los seis carbonos que forman un anillo no forman un anillo plano, sino un tipo de anillo «arrugado». Se conocen todos los ángulos y las distancias. Así pues, una fórmula química es simplemente una imagen de semejante molécula. Cuando el químico escribe una cosa semejante en la pizarra está tratando de «dibujar», hablando grosso modo, en dos dimensiones. Por ejemplo, vemos un «anillo» de seis carbonos, y una «cadena» de carbonos que cuelga en un extremo, con un oxígeno en el segundo lugar a partir del extremo, tres hidrógenos unidos al carbono, dos carbonos y tres hidrógenos adheridos aquí, etc.

1.10 La sustancia representada es a-irona. : 

1.10 La sustancia representada es a-irona.

¿Cómo descubre el químico cuál es la disposición? Él mezcla botellas llenas de algún material, y si éste se vuelve rojo, significa que consiste en un hidrógeno y dos carbonos unidos aquí; si se vuelve azul, por el contrario, no es esa la forma ni mucho menos. Esta es una de las más fantásticas piezas de trabajo detectivesco que se han hecho nunca: la química orgánica. Para descubrir la disposición de los átomos en estas formaciones enormemente complicadas, el químico observa qué sucede cuando mezcla dos sustancias diferentes. El físico nunca se acababa de creer que el químico supiera de lo que estaba hablando cuando describía la disposición de los átomos. Desde hace aproximadamente veinte años ha sido posible, en algunos casos, examinar moléculas semejantes (no tan complicadas como estas, pero sí algunas que contienen partes de ella) por un método físico, y ha sido posible localizar cada átomo, no observando colores, sino midiendo dónde están. Y ¡como por arte de magia!, los químicos tienen casi siempre razón. : 

¿Cómo descubre el químico cuál es la disposición? Él mezcla botellas llenas de algún material, y si éste se vuelve rojo, significa que consiste en un hidrógeno y dos carbonos unidos aquí; si se vuelve azul, por el contrario, no es esa la forma ni mucho menos. Esta es una de las más fantásticas piezas de trabajo detectivesco que se han hecho nunca: la química orgánica. Para descubrir la disposición de los átomos en estas formaciones enormemente complicadas, el químico observa qué sucede cuando mezcla dos sustancias diferentes. El físico nunca se acababa de creer que el químico supiera de lo que estaba hablando cuando describía la disposición de los átomos. Desde hace aproximadamente veinte años ha sido posible, en algunos casos, examinar moléculas semejantes (no tan complicadas como estas, pero sí algunas que contienen partes de ella) por un método físico, y ha sido posible localizar cada átomo, no observando colores, sino midiendo dónde están. Y ¡como por arte de magia!, los químicos tienen casi siempre razón.

Resulta, de hecho, que en las violetas hay tres moléculas ligeramente distintas, que difieren sólo en la disposición de los átomos de hidrógeno. : 

Resulta, de hecho, que en las violetas hay tres moléculas ligeramente distintas, que difieren sólo en la disposición de los átomos de hidrógeno.

Un problema de la química consiste en dar nombre a una sustancia, de tal modo que sepamos qué es. ¡Encontrar un nombre para esta forma! El nombre no sólo debe decir la forma, sino que también debe decir que aquí hay un átomo de oxígeno, ahí hay un hidrógeno: exactamente qué es y dónde está cada átomo. Es fácil comprender entonces que los nombres químicos deban ser complejos para poder ser completos. Vean ustedes que el nombre de esta cosa en la forma más completa que les revele su estructura es 4–(2,2,3,6 tetrametil–5–ciclohexanil)–3–buten–2–uno, y eso les dice que esta es la disposición. Podemos darnos cuenta de las dificultades que tienen los químicos, y darnos cuenta también de la razón de nombres tan largos. ¡No es que ellos quieran ser oscuros, sino que se enfrentan a un problema extremadamente difícil al tratar de describir las moléculas con palabras! : 

Un problema de la química consiste en dar nombre a una sustancia, de tal modo que sepamos qué es. ¡Encontrar un nombre para esta forma! El nombre no sólo debe decir la forma, sino que también debe decir que aquí hay un átomo de oxígeno, ahí hay un hidrógeno: exactamente qué es y dónde está cada átomo. Es fácil comprender entonces que los nombres químicos deban ser complejos para poder ser completos. Vean ustedes que el nombre de esta cosa en la forma más completa que les revele su estructura es 4–(2,2,3,6 tetrametil–5–ciclohexanil)–3–buten–2–uno, y eso les dice que esta es la disposición. Podemos darnos cuenta de las dificultades que tienen los químicos, y darnos cuenta también de la razón de nombres tan largos. ¡No es que ellos quieran ser oscuros, sino que se enfrentan a un problema extremadamente difícil al tratar de describir las moléculas con palabras!

¿Cómo sabemos que existen los átomos? Por uno de los trucos antes mencionados: hacemos la hipótesis de que existen átomos, y los resultados se siguen uno tras otro de la forma que predecimos, como debería ser si las cosas están hechas de átomos. Existe también una evidencia algo más directa, un buen ejemplo de la cual es el siguiente: los átomos son tan pequeños que ustedes no pueden verlos con un microscopio óptico; de hecho, ni siquiera con un microscopio electrónico. (Con un microscopio óptico ustedes sólo pueden ver cosas que son mucho más grandes.) Ahora bien, si los átomos están siempre en movimiento, digamos en agua, y ponemos una bola grande de algo en el agua, una bola mucho más grande que los átomos, la bola se agitará de un lado a otro, de forma muy parecida a un juego en donde un balón muy grande es empujado en todas direcciones por muchas personas. Las personas están empujando en diferentes direcciones, y el balón se mueve en el campo de una forma irregular. De la misma forma, la «gran bola» se moverá debido a las desigualdades de las colisiones en un lado y en otro, y de un instante al siguiente. Así, si miramos partículas muy pequeñas (coloides) en el agua a través de un microscopio excelente, vemos una agitación perpetua de las partículas que es el resultado del bombardeo de los átomos. Esto se denomina movimiento browniano. : 

¿Cómo sabemos que existen los átomos? Por uno de los trucos antes mencionados: hacemos la hipótesis de que existen átomos, y los resultados se siguen uno tras otro de la forma que predecimos, como debería ser si las cosas están hechas de átomos. Existe también una evidencia algo más directa, un buen ejemplo de la cual es el siguiente: los átomos son tan pequeños que ustedes no pueden verlos con un microscopio óptico; de hecho, ni siquiera con un microscopio electrónico. (Con un microscopio óptico ustedes sólo pueden ver cosas que son mucho más grandes.) Ahora bien, si los átomos están siempre en movimiento, digamos en agua, y ponemos una bola grande de algo en el agua, una bola mucho más grande que los átomos, la bola se agitará de un lado a otro, de forma muy parecida a un juego en donde un balón muy grande es empujado en todas direcciones por muchas personas. Las personas están empujando en diferentes direcciones, y el balón se mueve en el campo de una forma irregular. De la misma forma, la «gran bola» se moverá debido a las desigualdades de las colisiones en un lado y en otro, y de un instante al siguiente. Así, si miramos partículas muy pequeñas (coloides) en el agua a través de un microscopio excelente, vemos una agitación perpetua de las partículas que es el resultado del bombardeo de los átomos. Esto se denomina movimiento browniano.

Tenemos evidencia adicional de los átomos en la estructura de los cristales. En muchos casos las estructuras deducidas por análisis de rayos X coinciden en sus «formas» espaciales con las formas que realmente muestran los cristales tal como se dan en la naturaleza. Los ángulos entre las diversas «caras» de un cristal coinciden, dentro de un margen de segundos de arco, con los ángulos deducidos de la hipótesis de que un cristal está hecho de muchas «capas» de átomos. : 

Tenemos evidencia adicional de los átomos en la estructura de los cristales. En muchos casos las estructuras deducidas por análisis de rayos X coinciden en sus «formas» espaciales con las formas que realmente muestran los cristales tal como se dan en la naturaleza. Los ángulos entre las diversas «caras» de un cristal coinciden, dentro de un margen de segundos de arco, con los ángulos deducidos de la hipótesis de que un cristal está hecho de muchas «capas» de átomos.

Todo está hecho de átomos. Esta es la hipótesis clave. La hipótesis más importante de toda la biología, por ejemplo, es que todo lo que hacen los animales lo hacen los átomos. En otras palabras, no hay nada que hagan los seres vivos que no pueda ser comprendido desde el punto de vista de que están hechos de átomos que actúan de acuerdo con las leyes de la física. Esto no era conocido desde el principio: se necesitó alguna experimentación y teorización para sugerir esta hipótesis, pero ahora se acepta, y es la teoría más útil para producir nuevas ideas en el campo de la biología. : 

Todo está hecho de átomos. Esta es la hipótesis clave. La hipótesis más importante de toda la biología, por ejemplo, es que todo lo que hacen los animales lo hacen los átomos. En otras palabras, no hay nada que hagan los seres vivos que no pueda ser comprendido desde el punto de vista de que están hechos de átomos que actúan de acuerdo con las leyes de la física. Esto no era conocido desde el principio: se necesitó alguna experimentación y teorización para sugerir esta hipótesis, pero ahora se acepta, y es la teoría más útil para producir nuevas ideas en el campo de la biología.

Si un pedazo de acero o de sal, que consiste en átomos colocados uno detrás de otro, puede tener propiedades tan interesantes; si el agua —que no es otra cosa que estos pequeños borrones, un kilómetro tras otro de la misma cosa sobre la tierra— puede formar olas y espuma y hacer ruidos estruendosos y figuras extrañas cuando corre sobre el cemento; si todo esto, toda la vida de una corriente de agua, no es otra cosa que un montón de átomos, ¿cuánto más es posible? Si en lugar de disponer los átomos siguiendo una pauta definida, repetida una y otra vez, aquí y allí, o incluso formando pequeños fragmentos de complejidad como los que dan lugar al olor de las violetas, construimos una disposición que es siempre diferente de un lugar a otro, con diferentes tipos de átomos dispuestos de muchas formas, con cambios continuos y sin repetirse, ¿cuánto más maravilloso podrá ser el comportamiento de este objeto? ¿Es posible que este «objeto» que se pasea de un lado a otro delante de ustedes, hablándoles a ustedes, sea un gran montón de estos átomos en una disposición muy compleja, tal que su enorme complejidad sorprenda a la imaginación con lo que puede hacer? Cuando decimos que somos un montón de átomos no queremos decir que somos meramente un montón de átomos, porque un montón de átomos que no se repiten de un lugar a otro muy bien podría tener las posibilidades que ustedes ven ante sí en el espejo. : 

Si un pedazo de acero o de sal, que consiste en átomos colocados uno detrás de otro, puede tener propiedades tan interesantes; si el agua —que no es otra cosa que estos pequeños borrones, un kilómetro tras otro de la misma cosa sobre la tierra— puede formar olas y espuma y hacer ruidos estruendosos y figuras extrañas cuando corre sobre el cemento; si todo esto, toda la vida de una corriente de agua, no es otra cosa que un montón de átomos, ¿cuánto más es posible? Si en lugar de disponer los átomos siguiendo una pauta definida, repetida una y otra vez, aquí y allí, o incluso formando pequeños fragmentos de complejidad como los que dan lugar al olor de las violetas, construimos una disposición que es siempre diferente de un lugar a otro, con diferentes tipos de átomos dispuestos de muchas formas, con cambios continuos y sin repetirse, ¿cuánto más maravilloso podrá ser el comportamiento de este objeto? ¿Es posible que este «objeto» que se pasea de un lado a otro delante de ustedes, hablándoles a ustedes, sea un gran montón de estos átomos en una disposición muy compleja, tal que su enorme complejidad sorprenda a la imaginación con lo que puede hacer? Cuando decimos que somos un montón de átomos no queremos decir que somos meramente un montón de átomos, porque un montón de átomos que no se repiten de un lugar a otro muy bien podría tener las posibilidades que ustedes ven ante sí en el espejo.

Slide 157: 

— 2 —

Física básica : 

Física básica Introducción

En este capítulo examinaremos las ideas más fundamentales que tenemos acerca de la física: la naturaleza de las cosas tal como las vemos actualmente. No discutiremos la historia de cómo sabemos que todas estas ideas son verdaderas; ustedes aprenderán estos detalles a su debido tiempo. : 

En este capítulo examinaremos las ideas más fundamentales que tenemos acerca de la física: la naturaleza de las cosas tal como las vemos actualmente. No discutiremos la historia de cómo sabemos que todas estas ideas son verdaderas; ustedes aprenderán estos detalles a su debido tiempo.

Las cosas que nos interesan en ciencia aparecen en múltiples formas y con muchos atributos. Por ejemplo, si estamos de pie en la costa y miramos el mar, vemos el agua, las olas que rompen, la espuma, el movimiento del agua, el sonido, el aire, los vientos y las nubes, el sol y el cielo azul, y la luz; hay arena y hay rocas de diversa dureza y permanencia, color y textura. Hay animales y algas, hambre y enfermedad, y el observador en la playa; incluso puede haber felicidad y pensamiento. Cualquier otro punto en la naturaleza presenta una variedad similar de cosas e influencias. Siempre hay la misma complejidad, independientemente de dónde esté. La curiosidad exige que planteemos preguntas, que tratemos de unir las cosas y de comprender esta multitud de aspectos como resultantes tal vez de la acción de un número relativamente pequeño de cosas y fuerzas elementales que actúan en una infinita variedad de combinaciones. : 

Las cosas que nos interesan en ciencia aparecen en múltiples formas y con muchos atributos. Por ejemplo, si estamos de pie en la costa y miramos el mar, vemos el agua, las olas que rompen, la espuma, el movimiento del agua, el sonido, el aire, los vientos y las nubes, el sol y el cielo azul, y la luz; hay arena y hay rocas de diversa dureza y permanencia, color y textura. Hay animales y algas, hambre y enfermedad, y el observador en la playa; incluso puede haber felicidad y pensamiento. Cualquier otro punto en la naturaleza presenta una variedad similar de cosas e influencias. Siempre hay la misma complejidad, independientemente de dónde esté. La curiosidad exige que planteemos preguntas, que tratemos de unir las cosas y de comprender esta multitud de aspectos como resultantes tal vez de la acción de un número relativamente pequeño de cosas y fuerzas elementales que actúan en una infinita variedad de combinaciones.

Por ejemplo: ¿es la arena distinta de las rocas? Es decir, ¿es la arena algo más que un gran número de piedras minúsculas? ¿Es la Luna una gran roca? Si entendiéramos las rocas, ¿entenderíamos también la arena y la Luna? ¿Es el viento un chapoteo del aire análogo al movimiento confuso y ruidoso del agua en el mar? ¿Qué características comunes hay en movimientos diferentes? ¿Qué es común a los diferentes tipos de sonidos? ¿Cuántos colores diferentes existen? Y así sucesivamente. De esta forma tratamos de analizar poco a poco todas las cosas, unir cosas que a primera vista parecen diferentes, con la esperanza de que podamos ser capaces de reducir el número de cosas diferentes y, por consiguiente, comprenderlas mejor. : 

Por ejemplo: ¿es la arena distinta de las rocas? Es decir, ¿es la arena algo más que un gran número de piedras minúsculas? ¿Es la Luna una gran roca? Si entendiéramos las rocas, ¿entenderíamos también la arena y la Luna? ¿Es el viento un chapoteo del aire análogo al movimiento confuso y ruidoso del agua en el mar? ¿Qué características comunes hay en movimientos diferentes? ¿Qué es común a los diferentes tipos de sonidos? ¿Cuántos colores diferentes existen? Y así sucesivamente. De esta forma tratamos de analizar poco a poco todas las cosas, unir cosas que a primera vista parecen diferentes, con la esperanza de que podamos ser capaces de reducir el número de cosas diferentes y, por consiguiente, comprenderlas mejor.

Hace algunos cientos de años se concibió un método para encontrar respuestas parciales a tales preguntas. Observación, razonamiento y experimento constituyen lo que llamamos el método científico. Tendremos que limitarnos a una descripción desnuda de nuestra visión esencial de lo que a veces se denomina física fundamental, o las ideas fundamentales que han surgido de la aplicación del método científico. : 

Hace algunos cientos de años se concibió un método para encontrar respuestas parciales a tales preguntas. Observación, razonamiento y experimento constituyen lo que llamamos el método científico. Tendremos que limitarnos a una descripción desnuda de nuestra visión esencial de lo que a veces se denomina física fundamental, o las ideas fundamentales que han surgido de la aplicación del método científico.

¿Qué entendemos por «comprender» algo? Imaginemos que esta serie complicada de objetos en movimiento que constituyen «el mundo» es algo parecido a una gran partida de ajedrez jugada por los dioses, y que nosotros somos observadores del juego. Nosotros no sabemos cuáles son las reglas del juego; todo lo que se nos permite hacer es observar las jugadas. Por supuesto, si observamos durante el tiempo suficiente podríamos llegar a captar finalmente algunas de las reglas. Las reglas del juego son lo que entendemos por física fundamental. No obstante, quizá ni siquiera conociendo todas las reglas seríamos capaces de entender por qué se ha hecho un movimiento particular en el juego, por la sencilla razón de que es demasiado complicado y nuestras mentes son limitadas. Si ustedes juegan al ajedrez sabrán que es fácil aprender todas las reglas y, pese a todo, es a menudo muy difícil seleccionar el mejor movimiento o entender por qué un jugador ha hecho la jugada que ha hecho. Así sucede en la naturaleza, sólo que mucho más; pero al menos podemos ser capaces de encontrar todas las reglas. Realmente no tenemos ahora todas las reglas. (De tanto en tanto sucede algo, como un enroque; que aún no entendemos.) Aparte de no conocer todas las reglas, lo que realmente podemos explicar en términos de dichas reglas es muy limitado, porque casi todas las situaciones son tan enormemente complicadas que no podemos seguir las jugadas utilizando las reglas, y mucho menos decir lo que va a suceder a continuación. Debemos, por lo tanto, limitarnos a la cuestión más básica de las reglas del juego. Si conocemos las reglas, consideramos que «entendemos» el mundo. : 

¿Qué entendemos por «comprender» algo? Imaginemos que esta serie complicada de objetos en movimiento que constituyen «el mundo» es algo parecido a una gran partida de ajedrez jugada por los dioses, y que nosotros somos observadores del juego. Nosotros no sabemos cuáles son las reglas del juego; todo lo que se nos permite hacer es observar las jugadas. Por supuesto, si observamos durante el tiempo suficiente podríamos llegar a captar finalmente algunas de las reglas. Las reglas del juego son lo que entendemos por física fundamental. No obstante, quizá ni siquiera conociendo todas las reglas seríamos capaces de entender por qué se ha hecho un movimiento particular en el juego, por la sencilla razón de que es demasiado complicado y nuestras mentes son limitadas. Si ustedes juegan al ajedrez sabrán que es fácil aprender todas las reglas y, pese a todo, es a menudo muy difícil seleccionar el mejor movimiento o entender por qué un jugador ha hecho la jugada que ha hecho. Así sucede en la naturaleza, sólo que mucho más; pero al menos podemos ser capaces de encontrar todas las reglas. Realmente no tenemos ahora todas las reglas. (De tanto en tanto sucede algo, como un enroque; que aún no entendemos.) Aparte de no conocer todas las reglas, lo que realmente podemos explicar en términos de dichas reglas es muy limitado, porque casi todas las situaciones son tan enormemente complicadas que no podemos seguir las jugadas utilizando las reglas, y mucho menos decir lo que va a suceder a continuación. Debemos, por lo tanto, limitarnos a la cuestión más básica de las reglas del juego. Si conocemos las reglas, consideramos que «entendemos» el mundo.

¿Cómo podemos decir que las reglas del juego que «conjeturamos» son realmente correctas si no podemos analizar muy bien el juego? Hablando en términos generales, hay tres maneras de hacerlo. Primero, puede haber situaciones donde la naturaleza se las ha arreglado, o nosotros hemos arreglado a la naturaleza, para ser simple y tener tan pocas partes que podamos predecir exactamente lo que va a suceder, y en consecuencia podamos comprobar cómo trabajan nuestras reglas. (En una esquina del tablero puede haber sólo algunas piezas de ajedrez en acción, y eso lo podemos entender exactamente.) : 

¿Cómo podemos decir que las reglas del juego que «conjeturamos» son realmente correctas si no podemos analizar muy bien el juego? Hablando en términos generales, hay tres maneras de hacerlo. Primero, puede haber situaciones donde la naturaleza se las ha arreglado, o nosotros hemos arreglado a la naturaleza, para ser simple y tener tan pocas partes que podamos predecir exactamente lo que va a suceder, y en consecuencia podamos comprobar cómo trabajan nuestras reglas. (En una esquina del tablero puede haber sólo algunas piezas de ajedrez en acción, y eso lo podemos entender exactamente.)

Una buena segunda manera de comprobar las reglas es hacerlo a partir de reglas menos específicas derivadas de las primeras. Por ejemplo, la regla del movimiento de un alfil en un tablero de ajedrez consiste en que se mueve sólo en diagonal. Uno puede deducir, independientemente de cuántos movimientos puedan hacerse, que un alfil determinado estará siempre en una casilla blanca. De este modo, aun sin ser capaces de seguir todos los detalles, siempre podemos comprobar nuestra idea sobre el movimiento del alfil mirando si está siempre en una casilla blanca. Por supuesto, lo estará durante mucho tiempo, hasta que de repente encontramos que está en una casilla negra (lo que sucedió, por supuesto, es que mientras tanto el alfil fue capturado, y además un peón coronó y se convirtió en un alfil en una casilla negra). Eso mismo pasa en física. Durante mucho tiempo tendremos una regla que trabaja de forma excelente en general, incluso si no podemos seguir los detalles, y luego podemos descubrir en algún momento una nueva regla. Desde el punto de vista de la física básica, los fenómenos más interesantes están por supuesto en los nuevos lugares, los lugares donde las reglas no funcionan, ¡no los lugares donde sí funcionan! Así es como descubrimos nuevas reglas. : 

Una buena segunda manera de comprobar las reglas es hacerlo a partir de reglas menos específicas derivadas de las primeras. Por ejemplo, la regla del movimiento de un alfil en un tablero de ajedrez consiste en que se mueve sólo en diagonal. Uno puede deducir, independientemente de cuántos movimientos puedan hacerse, que un alfil determinado estará siempre en una casilla blanca. De este modo, aun sin ser capaces de seguir todos los detalles, siempre podemos comprobar nuestra idea sobre el movimiento del alfil mirando si está siempre en una casilla blanca. Por supuesto, lo estará durante mucho tiempo, hasta que de repente encontramos que está en una casilla negra (lo que sucedió, por supuesto, es que mientras tanto el alfil fue capturado, y además un peón coronó y se convirtió en un alfil en una casilla negra). Eso mismo pasa en física. Durante mucho tiempo tendremos una regla que trabaja de forma excelente en general, incluso si no podemos seguir los detalles, y luego podemos descubrir en algún momento una nueva regla. Desde el punto de vista de la física básica, los fenómenos más interesantes están por supuesto en los nuevos lugares, los lugares donde las reglas no funcionan, ¡no los lugares donde sí funcionan! Así es como descubrimos nuevas reglas.

La tercera manera de decir si nuestras ideas son correctas es relativamente burda pero probablemente es la más poderosa de todas ellas: por aproximación. Aunque quizá no seamos capaces de decir por qué Alekhine mueve esta pieza concreta, quizá podamos comprender en un sentido muy amplio que él está reuniendo sus piezas alrededor del rey para protegerlo, más o menos, puesto que es lo más razonable que se puede hacer en las circunstancias dadas. De la misma forma, a veces podemos entender la naturaleza, más o menos, sin ser capaces de ver qué está haciendo cada pieza menor, en términos de nuestra comprensión del juego. : 

La tercera manera de decir si nuestras ideas son correctas es relativamente burda pero probablemente es la más poderosa de todas ellas: por aproximación. Aunque quizá no seamos capaces de decir por qué Alekhine mueve esta pieza concreta, quizá podamos comprender en un sentido muy amplio que él está reuniendo sus piezas alrededor del rey para protegerlo, más o menos, puesto que es lo más razonable que se puede hacer en las circunstancias dadas. De la misma forma, a veces podemos entender la naturaleza, más o menos, sin ser capaces de ver qué está haciendo cada pieza menor, en términos de nuestra comprensión del juego.

Al principio, los fenómenos de la naturaleza fueron divididos de forma muy general en categorías como calor, electricidad, mecánica, magnetismo, propiedades de las sustancias, fenómenos químicos, luz u óptica, rayos X, física nuclear, gravitación, fenómenos mesónicos, etc. Sin embargo, el objetivo es ver toda la naturaleza como aspectos diferentes de un conjunto de fenómenos. Este es el problema con que se encuentra actualmente la física teórica básica: encontrar las leyes que hay tras el experimento; amalgamar estas categorías. Hasta ahora siempre hemos sido capaces de amalgamarlas, pero con el paso del tiempo se encuentran cosas nuevas. Estábamos amalgamando muy bien cuando, de repente, se descubrieron los rayos X. Luego amalgamamos algo más, y se descubrieron los mesones. Por lo tanto, en cualquier fase del juego, éste siempre parece bastante confuso. Se ha amalgamado mucho, pero siempre hay muchos cables o hilos sueltos en todas direcciones. Esta es la situación actual, que vamos a tratar de describir. : 

Al principio, los fenómenos de la naturaleza fueron divididos de forma muy general en categorías como calor, electricidad, mecánica, magnetismo, propiedades de las sustancias, fenómenos químicos, luz u óptica, rayos X, física nuclear, gravitación, fenómenos mesónicos, etc. Sin embargo, el objetivo es ver toda la naturaleza como aspectos diferentes de un conjunto de fenómenos. Este es el problema con que se encuentra actualmente la física teórica básica: encontrar las leyes que hay tras el experimento; amalgamar estas categorías. Hasta ahora siempre hemos sido capaces de amalgamarlas, pero con el paso del tiempo se encuentran cosas nuevas. Estábamos amalgamando muy bien cuando, de repente, se descubrieron los rayos X. Luego amalgamamos algo más, y se descubrieron los mesones. Por lo tanto, en cualquier fase del juego, éste siempre parece bastante confuso. Se ha amalgamado mucho, pero siempre hay muchos cables o hilos sueltos en todas direcciones. Esta es la situación actual, que vamos a tratar de describir.

Algunos ejemplos históricos de amalgamación son los siguientes. Consideremos, en primer lugar, el calor y la mecánica. Cuando los átomos están en movimiento, cuanto mayor es el movimiento más calor contiene el sistema, y por ello el calor y todos los efectos de la temperatura pueden ser representados por las leyes de la mecánica. Otra amalgamación enorme fue el descubrimiento de la relación entre la electricidad, el magnetismo y la luz, que se mostraron como aspectos diferentes de un mismo objeto, que hoy llamamos el campo electromagnético. Otra amalgamación es la unificación de los fenómenos químicos, las diversas propiedades de las diversas sustancias y el comportamiento de las partículas atómicas, que se da en la mecánica cuántica de la química. : 

Algunos ejemplos históricos de amalgamación son los siguientes. Consideremos, en primer lugar, el calor y la mecánica. Cuando los átomos están en movimiento, cuanto mayor es el movimiento más calor contiene el sistema, y por ello el calor y todos los efectos de la temperatura pueden ser representados por las leyes de la mecánica. Otra amalgamación enorme fue el descubrimiento de la relación entre la electricidad, el magnetismo y la luz, que se mostraron como aspectos diferentes de un mismo objeto, que hoy llamamos el campo electromagnético. Otra amalgamación es la unificación de los fenómenos químicos, las diversas propiedades de las diversas sustancias y el comportamiento de las partículas atómicas, que se da en la mecánica cuántica de la química.

Por supuesto, la cuestión es: ¿será posible amalgamarlo todo, y descubrir simplemente que este mundo representa aspectos diferentes de una cosa? Nadie lo sabe. Todo lo que sabemos es que a medida que seguimos adelante descubrimos que podemos amalgamar piezas, y luego encontramos algunas piezas que no encajan con las otras y seguimos tratando de componer el rompecabezas. La cuestión de si hay o no un número finito de piezas, o incluso de si hay o no un límite para el rompecabezas, es, por supuesto, una incógnita. Nunca se sabrá hasta que terminemos el cuadro, si lo hacemos alguna vez. Lo que queremos hacer aquí es ver hasta qué punto se ha llegado en este proceso de unificación, y cuál es la situación actual en la comprensión de los fenómenos físicos en términos del menor conjunto de principios. Para expresarlo de un modo simple, ¿de qué están hechas las cosas y cuántos elementos existen? : 

Por supuesto, la cuestión es: ¿será posible amalgamarlo todo, y descubrir simplemente que este mundo representa aspectos diferentes de una cosa? Nadie lo sabe. Todo lo que sabemos es que a medida que seguimos adelante descubrimos que podemos amalgamar piezas, y luego encontramos algunas piezas que no encajan con las otras y seguimos tratando de componer el rompecabezas. La cuestión de si hay o no un número finito de piezas, o incluso de si hay o no un límite para el rompecabezas, es, por supuesto, una incógnita. Nunca se sabrá hasta que terminemos el cuadro, si lo hacemos alguna vez. Lo que queremos hacer aquí es ver hasta qué punto se ha llegado en este proceso de unificación, y cuál es la situación actual en la comprensión de los fenómenos físicos en términos del menor conjunto de principios. Para expresarlo de un modo simple, ¿de qué están hechas las cosas y cuántos elementos existen? La física antes de 1920

Es un poco difícil empezar de golpe con la visión actual, de modo que primero veremos cómo se veían las cosas alrededor de 1920 y luego sacaremos algunas cosas de dicha imagen. Antes de 1920, nuestra imagen del mundo era algo parecido a esto: el «escenario» en el que se presenta el universo es el espacio tridimensional de la geometría, tal como es descrito por Euclides, y las cosas cambian en un medio llamado tiempo. Los elementos sobre el escenario son las partículas, por ejemplo los átomos, que tienen ciertas propiedades. En primer lugar, la propiedad de inercia: si una partícula se está moviendo continuará moviéndose en la misma dirección a menos que sobre ella actúen fuerzas. El segundo elemento, por lo tanto, son las fuerzas, que entonces se pensaba que eran de dos tipos: el primero, un enormemente complicado y detallado tipo de fuerza de interacción que mantenía los diferentes átomos en diferentes combinaciones de una forma complicada, que determinaba si la sal se disolvería más rápida o más lentamente cuando aumentamos la temperatura. La otra fuerza que se conocía era una interacción de largo alcance —una atracción suave y silenciosa— que variaba de forma inversamente proporcional al cuadrado de la distancia, y fue denominada gravitación. Esta ley era conocida y era muy simple. Lo que no se conocía, por supuesto, era por qué las cosas permanecen en movimiento cuando se están moviendo, o por qué existe una ley de la gravitación. : 

Es un poco difícil empezar de golpe con la visión actual, de modo que primero veremos cómo se veían las cosas alrededor de 1920 y luego sacaremos algunas cosas de dicha imagen. Antes de 1920, nuestra imagen del mundo era algo parecido a esto: el «escenario» en el que se presenta el universo es el espacio tridimensional de la geometría, tal como es descrito por Euclides, y las cosas cambian en un medio llamado tiempo. Los elementos sobre el escenario son las partículas, por ejemplo los átomos, que tienen ciertas propiedades. En primer lugar, la propiedad de inercia: si una partícula se está moviendo continuará moviéndose en la misma dirección a menos que sobre ella actúen fuerzas. El segundo elemento, por lo tanto, son las fuerzas, que entonces se pensaba que eran de dos tipos: el primero, un enormemente complicado y detallado tipo de fuerza de interacción que mantenía los diferentes átomos en diferentes combinaciones de una forma complicada, que determinaba si la sal se disolvería más rápida o más lentamente cuando aumentamos la temperatura. La otra fuerza que se conocía era una interacción de largo alcance —una atracción suave y silenciosa— que variaba de forma inversamente proporcional al cuadrado de la distancia, y fue denominada gravitación. Esta ley era conocida y era muy simple. Lo que no se conocía, por supuesto, era por qué las cosas permanecen en movimiento cuando se están moviendo, o por qué existe una ley de la gravitación.

Lo que aquí nos interesa es una descripción de la naturaleza. Desde este punto de vista, un gas, y en realidad toda la materia, es una infinidad de partículas en movimiento. Así, muchas de las cosas que vimos mientras permanecíamos de pie en la orilla del mar pueden ser relacionadas inmediatamente. Primero la presión: ésta procede de las colisiones de los átomos con las paredes o lo que sea; el impulso de los átomos, si todos se están moviendo en una cierta dirección en promedio, es el viento; los movimientos aleatorios internos son el calor. Hay ondas de exceso de densidad, donde se han reunido demasiadas partículas y, por ello, cuando se separan precipitadamente empujan a montones de partículas situadas más lejos, y así sucesivamente. Esta onda de exceso de densidad es el sonido. Constituye un enorme logro que seamos capaces de comprender tanto. Algunas de estas cosas se describieron en el capítulo anterior. : 

Lo que aquí nos interesa es una descripción de la naturaleza. Desde este punto de vista, un gas, y en realidad toda la materia, es una infinidad de partículas en movimiento. Así, muchas de las cosas que vimos mientras permanecíamos de pie en la orilla del mar pueden ser relacionadas inmediatamente. Primero la presión: ésta procede de las colisiones de los átomos con las paredes o lo que sea; el impulso de los átomos, si todos se están moviendo en una cierta dirección en promedio, es el viento; los movimientos aleatorios internos son el calor. Hay ondas de exceso de densidad, donde se han reunido demasiadas partículas y, por ello, cuando se separan precipitadamente empujan a montones de partículas situadas más lejos, y así sucesivamente. Esta onda de exceso de densidad es el sonido. Constituye un enorme logro que seamos capaces de comprender tanto. Algunas de estas cosas se describieron en el capítulo anterior.

¿Qué tipos de partículas existen? En esa época se consideraba que había 92: 92 tipos diferentes de átomos se descubrieron finalmente. Tenían nombres diferentes asociados a sus propiedades químicas. : 

¿Qué tipos de partículas existen? En esa época se consideraba que había 92: 92 tipos diferentes de átomos se descubrieron finalmente. Tenían nombres diferentes asociados a sus propiedades químicas.

La siguiente parte del problema era: ¿cuáles son las fuerzas de corto alcance? ¿Por qué el carbono atrae a un oxígeno o quizá dos oxígenos, pero no a tres oxígenos? ¿Cuál es el mecanismo de la interacción entre los átomos? ¿Es la gravitación? La respuesta es no. La gravedad es demasiado débil. Pero imaginemos una fuerza análoga a la gravedad, que varíe de forma inversamente proporcional al cuadrado de la distancia, aunque enormemente más potente y con una diferencia: en la gravedad cada objeto atrae a todos los demás, pero imaginemos ahora que existen dos tipos de «objetos», y que esta nueva fuerza (que, por supuesto, es la fuerza eléctrica) tiene la propiedad de que los semejantes se repelen pero los diferentes se atraen. El «objeto» que porta esta interacción fuerte se denomina carga. : 

La siguiente parte del problema era: ¿cuáles son las fuerzas de corto alcance? ¿Por qué el carbono atrae a un oxígeno o quizá dos oxígenos, pero no a tres oxígenos? ¿Cuál es el mecanismo de la interacción entre los átomos? ¿Es la gravitación? La respuesta es no. La gravedad es demasiado débil. Pero imaginemos una fuerza análoga a la gravedad, que varíe de forma inversamente proporcional al cuadrado de la distancia, aunque enormemente más potente y con una diferencia: en la gravedad cada objeto atrae a todos los demás, pero imaginemos ahora que existen dos tipos de «objetos», y que esta nueva fuerza (que, por supuesto, es la fuerza eléctrica) tiene la propiedad de que los semejantes se repelen pero los diferentes se atraen. El «objeto» que porta esta interacción fuerte se denomina carga.

Entonces ¿qué es lo que tenemos? Supongamos que tenemos dos objetos diferentes que se atraen mutuamente, un más y un menos, y que están muy próximos. Supongamos que tenemos otra carga a cierta distancia. ¿Sentiría alguna atracción? No sentiría prácticamente ninguna, porque si las dos primeras cargas tienen el mismo tamaño, la atracción de una y la repulsión de la otra se cancelan. Por lo tanto, hay una fuerza muy pequeña a distancias apreciables. Por el contrario, si nos acercamos mucho con la carga extra aparece una atracción, porque la repulsión de los iguales y la atracción de los diferentes hará que los diferentes se coloquen más próximos y los iguales se aparten. Entonces la repulsión será menor que la atracción. Esta es la razón de que los átomos, que están constituidos por cargas eléctricas más y menos, experimenten una fuerza muy pequeña (aparte de la gravedad) cuando están separados por una distancia apreciable. Cuando se acercan pueden «ver dentro» del otro y redistribuir sus cargas, con el resultado de que tienen una interacción muy fuerte. La base última de la interacción entre los átomos es eléctrica. Puesto que esta fuerza es tan enorme, todos los más y todos los menos se unirán normalmente en una combinación tan íntima como sea posible. Todas las cosas, incluso nosotros mismos, tienen un granulado fino, con partes «más» y «menos» que interaccionan fuertemente, todas ellas globalmente compensadas. De cuando en cuando, por accidente, podemos robar algunos menos o algunos más (normalmente es más fácil robar menos), y en tales circunstancias encontramos la fuerza de la electricidad descompensada y podemos ver los efectos de estas atracciones eléctricas. : 

Entonces ¿qué es lo que tenemos? Supongamos que tenemos dos objetos diferentes que se atraen mutuamente, un más y un menos, y que están muy próximos. Supongamos que tenemos otra carga a cierta distancia. ¿Sentiría alguna atracción? No sentiría prácticamente ninguna, porque si las dos primeras cargas tienen el mismo tamaño, la atracción de una y la repulsión de la otra se cancelan. Por lo tanto, hay una fuerza muy pequeña a distancias apreciables. Por el contrario, si nos acercamos mucho con la carga extra aparece una atracción, porque la repulsión de los iguales y la atracción de los diferentes hará que los diferentes se coloquen más próximos y los iguales se aparten. Entonces la repulsión será menor que la atracción. Esta es la razón de que los átomos, que están constituidos por cargas eléctricas más y menos, experimenten una fuerza muy pequeña (aparte de la gravedad) cuando están separados por una distancia apreciable. Cuando se acercan pueden «ver dentro» del otro y redistribuir sus cargas, con el resultado de que tienen una interacción muy fuerte. La base última de la interacción entre los átomos es eléctrica. Puesto que esta fuerza es tan enorme, todos los más y todos los menos se unirán normalmente en una combinación tan íntima como sea posible. Todas las cosas, incluso nosotros mismos, tienen un granulado fino, con partes «más» y «menos» que interaccionan fuertemente, todas ellas globalmente compensadas. De cuando en cuando, por accidente, podemos robar algunos menos o algunos más (normalmente es más fácil robar menos), y en tales circunstancias encontramos la fuerza de la electricidad descompensada y podemos ver los efectos de estas atracciones eléctricas.

Para dar una idea de lo mucho más fuerte que es la electricidad respecto a la gravitación, consideremos dos granos de arena de un milímetro de diámetro, separados a una distancia de treinta metros. Si la fuerza entre ellos no estuviera compensada, si cualquier cosa atrajese a cualquier otra en lugar de repeler a los iguales, de modo que no hubiera cancelación, ¿qué intensidad tendría la fuerza? ¡Habría una fuerza de tres millones de toneladas entre los dos! Verán ustedes que basta con un exceso o un déficit muy pequeño del número de cargas negativas o positivas para producir efectos eléctricos apreciables. Esta es, por supuesto, la razón de que ustedes no puedan ver la diferencia entre un objeto eléctricamente cargado y otro descargado: están implicadas tan pocas partículas que apenas supone diferencia en el peso o el tamaño de un objeto. : 

Para dar una idea de lo mucho más fuerte que es la electricidad respecto a la gravitación, consideremos dos granos de arena de un milímetro de diámetro, separados a una distancia de treinta metros. Si la fuerza entre ellos no estuviera compensada, si cualquier cosa atrajese a cualquier otra en lugar de repeler a los iguales, de modo que no hubiera cancelación, ¿qué intensidad tendría la fuerza? ¡Habría una fuerza de tres millones de toneladas entre los dos! Verán ustedes que basta con un exceso o un déficit muy pequeño del número de cargas negativas o positivas para producir efectos eléctricos apreciables. Esta es, por supuesto, la razón de que ustedes no puedan ver la diferencia entre un objeto eléctricamente cargado y otro descargado: están implicadas tan pocas partículas que apenas supone diferencia en el peso o el tamaño de un objeto.

Con esta imagen, los átomos eran más fáciles de comprender. Se pensaba que los átomos tienen un «núcleo» en el centro, con carga eléctrica positiva y muy masivo, y el núcleo está rodeado de cierto número de «electrones», que son muy ligeros y están cargados negativamente. Ahora avancemos un poco más en nuestra historia para comentar que en el propio núcleo se encontraron dos tipos de partículas, protones y neutrones, ambos muy pesados y casi de la misma masa. Los protones están eléctricamente cargados y los neutrones son neutros. Si tenemos un átomo con seis protones en su núcleo, y éste está rodeado por seis electrones (las partículas negativas en la materia ordinaria son todas electrones, y son muy ligeras comparadas con los protones y los neutrones que constituyen los núcleos), sería el átomo número seis en la tabla química, y se llama carbono. El átomo número ocho se llama oxígeno, etc., porque las propiedades químicas dependen de los electrones en el exterior y, de hecho, sólo de cuántos electrones hay. De este modo, las propiedades químicas de una sustancia dependen sólo de un número, el número de electrones. (La lista entera de elementos químicos podría haber sido en realidad 1, 2, 3, 4, 5, etc. En lugar de decir «carbono», podríamos decir «elemento seis», entendiendo seis electrones, pero, por supuesto, cuando los elementos se descubrieron por primera vez no se sabía que podían ser numerados de esta forma y, además, hubiera hecho que todo pareciese muy complicado. Es mejor tener nombres y símbolos para estas cosas, más que llamar a todas las cosas por un número.) : 

Con esta imagen, los átomos eran más fáciles de comprender. Se pensaba que los átomos tienen un «núcleo» en el centro, con carga eléctrica positiva y muy masivo, y el núcleo está rodeado de cierto número de «electrones», que son muy ligeros y están cargados negativamente. Ahora avancemos un poco más en nuestra historia para comentar que en el propio núcleo se encontraron dos tipos de partículas, protones y neutrones, ambos muy pesados y casi de la misma masa. Los protones están eléctricamente cargados y los neutrones son neutros. Si tenemos un átomo con seis protones en su núcleo, y éste está rodeado por seis electrones (las partículas negativas en la materia ordinaria son todas electrones, y son muy ligeras comparadas con los protones y los neutrones que constituyen los núcleos), sería el átomo número seis en la tabla química, y se llama carbono. El átomo número ocho se llama oxígeno, etc., porque las propiedades químicas dependen de los electrones en el exterior y, de hecho, sólo de cuántos electrones hay. De este modo, las propiedades químicas de una sustancia dependen sólo de un número, el número de electrones. (La lista entera de elementos químicos podría haber sido en realidad 1, 2, 3, 4, 5, etc. En lugar de decir «carbono», podríamos decir «elemento seis», entendiendo seis electrones, pero, por supuesto, cuando los elementos se descubrieron por primera vez no se sabía que podían ser numerados de esta forma y, además, hubiera hecho que todo pareciese muy complicado. Es mejor tener nombres y símbolos para estas cosas, más que llamar a todas las cosas por un número.)

Muchas cosas se descubrieron acerca de la fuerza eléctrica. La interpretación natural de la interacción eléctrica es que dos objetos se atraen mutuamente: el más atrae al menos. Sin embargo, se des cubrió que esta era una idea inadecuada para representarlo. Una representación más adecuada de la situación consiste en decir que la existencia de la carga positiva distorsiona o crea en cierto sentido una «condición» en el espacio, de modo que cuando en dicho espacio colocamos la carga negativa, ésta siente una fuerza. Esta potencialidad para producir una fuerza se denomina un campo eléctrico. Cuando colocamos un electrón en un campo eléctrico, decimos que es «atraído». Tenemos entonces dos reglas: a) las cargas crean un campo, y b) las cargas situadas en los campos experimentan fuerzas y se mueven. La razón para esto se hará clara cuando discutamos los fenómenos siguientes: si cargamos eléctricamente un cuerpo, digamos un peine, y luego colocamos un pedazo de papel cargado a cierta distancia y movemos el peine de un lado a otro, el papel responderá apuntando siempre al peine. Si lo movemos más rápidamente, se verá que el papel se queda un poco rezagado, hay un retraso en la acción. (En la primera etapa, cuando movemos el peine lentamente, nos encontramos con una complicación que es el magnetismo. Las influencias magnéticas tienen que ver con cargas en movimiento relativo, de modo que las fuerzas eléctricas y las fuerzas magnéticas pueden atribuirse realmente a un mismo campo, como dos aspectos diferentes de exactamente la misma cosa. Un campo eléctrico variable no puede existir sin magnetismo.) Si alejamos más el papel cargado, el retraso es mayor. Entonces se observa algo interesante. Aunque las fuerzas entre dos objetos cargados deberían variar de forma inversamente proporcional al cuadrado de la distancia, cuando movemos una carga se encuentra que la influencia se extiende mucho más lejos de lo que podríamos conjeturar a primera vista. Esto es, el efecto decrece más lentamente que la inversa del cuadrado. : 

Muchas cosas se descubrieron acerca de la fuerza eléctrica. La interpretación natural de la interacción eléctrica es que dos objetos se atraen mutuamente: el más atrae al menos. Sin embargo, se des cubrió que esta era una idea inadecuada para representarlo. Una representación más adecuada de la situación consiste en decir que la existencia de la carga positiva distorsiona o crea en cierto sentido una «condición» en el espacio, de modo que cuando en dicho espacio colocamos la carga negativa, ésta siente una fuerza. Esta potencialidad para producir una fuerza se denomina un campo eléctrico. Cuando colocamos un electrón en un campo eléctrico, decimos que es «atraído». Tenemos entonces dos reglas: a) las cargas crean un campo, y b) las cargas situadas en los campos experimentan fuerzas y se mueven. La razón para esto se hará clara cuando discutamos los fenómenos siguientes: si cargamos eléctricamente un cuerpo, digamos un peine, y luego colocamos un pedazo de papel cargado a cierta distancia y movemos el peine de un lado a otro, el papel responderá apuntando siempre al peine. Si lo movemos más rápidamente, se verá que el papel se queda un poco rezagado, hay un retraso en la acción. (En la primera etapa, cuando movemos el peine lentamente, nos encontramos con una complicación que es el magnetismo. Las influencias magnéticas tienen que ver con cargas en movimiento relativo, de modo que las fuerzas eléctricas y las fuerzas magnéticas pueden atribuirse realmente a un mismo campo, como dos aspectos diferentes de exactamente la misma cosa. Un campo eléctrico variable no puede existir sin magnetismo.) Si alejamos más el papel cargado, el retraso es mayor. Entonces se observa algo interesante. Aunque las fuerzas entre dos objetos cargados deberían variar de forma inversamente proporcional al cuadrado de la distancia, cuando movemos una carga se encuentra que la influencia se extiende mucho más lejos de lo que podríamos conjeturar a primera vista. Esto es, el efecto decrece más lentamente que la inversa del cuadrado.

He aquí una analogía: si estamos en una piscina y existe un corcho flotando muy cerca, podemos moverlo «directamente» desplazando el agua con otro corcho. Si ustedes mirasen sólo los dos corchos, todo lo que verían sería que uno se movía inmediatamente en respuesta al movimiento del otro: hay algún tipo de «interacción» entre ellos. Por supuesto, lo que realmente hacemos es perturbar el agua; el agua perturba entonces al otro corcho. Podíamos construir una «ley» según la cual si ustedes desplazan el agua un poco, un objeto próximo en el agua se moverá. Si estuviese más lejos, por supuesto, el segundo corcho se movería menos, pues nosotros movemos el agua localmente. Por el contrario, si agitamos el corcho aparece un nuevo fenómeno: el movimiento del agua hace que se mueva el agua que hay más allá, etc., y se propagan ondas, de modo que, por agitación, hay una influencia mucho más lejana, una influencia oscilatoria, que no puede entenderse a partir de la interacción directa. Por consiguiente, la idea de interacción directa debe ser reemplazada por la existencia del agua, o en el caso eléctrico, por lo que denominamos el campo electromagnético. : 

He aquí una analogía: si estamos en una piscina y existe un corcho flotando muy cerca, podemos moverlo «directamente» desplazando el agua con otro corcho. Si ustedes mirasen sólo los dos corchos, todo lo que verían sería que uno se movía inmediatamente en respuesta al movimiento del otro: hay algún tipo de «interacción» entre ellos. Por supuesto, lo que realmente hacemos es perturbar el agua; el agua perturba entonces al otro corcho. Podíamos construir una «ley» según la cual si ustedes desplazan el agua un poco, un objeto próximo en el agua se moverá. Si estuviese más lejos, por supuesto, el segundo corcho se movería menos, pues nosotros movemos el agua localmente. Por el contrario, si agitamos el corcho aparece un nuevo fenómeno: el movimiento del agua hace que se mueva el agua que hay más allá, etc., y se propagan ondas, de modo que, por agitación, hay una influencia mucho más lejana, una influencia oscilatoria, que no puede entenderse a partir de la interacción directa. Por consiguiente, la idea de interacción directa debe ser reemplazada por la existencia del agua, o en el caso eléctrico, por lo que denominamos el campo electromagnético.

2.1 El espectro electromagnético : 

2.1 El espectro electromagnético

El campo electromagnético puede transportar ondas; algunas de estas ondas son luz, otras se utilizan en emisiones radiofónicas, pero el nombre general es de ondas electromagnéticas. Estas ondas oscilantes pueden tener diversas frecuencias. La única cosa que es realmente diferente de una onda a otra es la frecuencia de oscilación. Si movemos una carga de un lado a otro cada vez con mayor rapidez y observamos los efectos, obtenemos toda una serie de tipos diferentes de efectos, todos los cuales quedan unificados al especificar solamente un número, el número de oscilaciones por segundo. La «toma de corriente» normal que sacamos de los circuitos eléctricos de las paredes de un edificio tiene una frecuencia del orden de 100 ciclos por segundo. Si aumentamos la frecuencia a 500 o 1.000 kilociclos (1 kilociclo = 1.000 ciclos) por segundo, estamos «en el aire», pues este es el intervalo de frecuencias que se utiliza para emisiones radiofónicas. (Por supuesto, ¡esto no tiene nada que ver con el aire! Podemos tener emisiones radiofónicas en ausencia de aire.) Si aumentamos de nuevo la frecuencia, entramos en el intervalo que se utiliza para FM y TV. Yendo aún más lejos, utilizamos ciertas ondas cortas, por ejemplo para radar. Aumentamos aún más la frecuencia y ya no necesitamos un instrumento para «ver» el material: podemos verlo con el ojo humano. En el rango de frecuencia entre 5 x 1014 y 5 x 1015 ciclos por segundo nuestros ojos verían la oscilación del peine cargado, si pudiéramos agitarlo con tanta rapidez, como luz roja, azul o violeta, dependiendo de la frecuencia. Las frecuencias por debajo de este intervalo se denominan infrarrojas, y por encima del mismo, ultravioletas. El hecho de que podamos ver en un intervalo de frecuencias concreto no hace que esta parte del espectro electromagnético sea más impresionante que las otras partes desde el punto de vista de un físico, pero desde el punto de vista humano, por supuesto, sí es más interesante. Si subimos aún más alto en frecuencias, obtenemos rayos X. Los rayos X no son otra cosa que luz de frecuencia muy alta. Si vamos aún más arriba, obtenemos rayos gamma. Estos dos términos, rayos X y rayos gamma, se utilizan casi como sinónimos. Normalmente los rayos electromagnéticos procedentes de los núcleos se denominan rayos gamma, mientras que aquellos de alta energía procedentes de átomos se denominan rayos X, pero a la misma frecuencia son físicamente indistinguibles, no importa cuál sea su fuente. Si vamos a frecuencias aún más altas, digamos a 1024 ciclos por segundo, encontramos que podemos producir dichas ondas artificialmente, por ejemplo con el sincrotrón que existe aquí en el Caltech. Podemos hallar ondas electromagnéticas con frecuencias enormemente altas —incluso con una oscilación mil veces más rápida— en las ondas encontradas en los rayos cósmicos. Estas ondas no pueden ser controladas por nosotros. : 

El campo electromagnético puede transportar ondas; algunas de estas ondas son luz, otras se utilizan en emisiones radiofónicas, pero el nombre general es de ondas electromagnéticas. Estas ondas oscilantes pueden tener diversas frecuencias. La única cosa que es realmente diferente de una onda a otra es la frecuencia de oscilación. Si movemos una carga de un lado a otro cada vez con mayor rapidez y observamos los efectos, obtenemos toda una serie de tipos diferentes de efectos, todos los cuales quedan unificados al especificar solamente un número, el número de oscilaciones por segundo. La «toma de corriente» normal que sacamos de los circuitos eléctricos de las paredes de un edificio tiene una frecuencia del orden de 100 ciclos por segundo. Si aumentamos la frecuencia a 500 o 1.000 kilociclos (1 kilociclo = 1.000 ciclos) por segundo, estamos «en el aire», pues este es el intervalo de frecuencias que se utiliza para emisiones radiofónicas. (Por supuesto, ¡esto no tiene nada que ver con el aire! Podemos tener emisiones radiofónicas en ausencia de aire.) Si aumentamos de nuevo la frecuencia, entramos en el intervalo que se utiliza para FM y TV. Yendo aún más lejos, utilizamos ciertas ondas cortas, por ejemplo para radar. Aumentamos aún más la frecuencia y ya no necesitamos un instrumento para «ver» el material: podemos verlo con el ojo humano. En el rango de frecuencia entre 5 x 1014 y 5 x 1015 ciclos por segundo nuestros ojos verían la oscilación del peine cargado, si pudiéramos agitarlo con tanta rapidez, como luz roja, azul o violeta, dependiendo de la frecuencia. Las frecuencias por debajo de este intervalo se denominan infrarrojas, y por encima del mismo, ultravioletas. El hecho de que podamos ver en un intervalo de frecuencias concreto no hace que esta parte del espectro electromagnético sea más impresionante que las otras partes desde el punto de vista de un físico, pero desde el punto de vista humano, por supuesto, sí es más interesante. Si subimos aún más alto en frecuencias, obtenemos rayos X. Los rayos X no son otra cosa que luz de frecuencia muy alta. Si vamos aún más arriba, obtenemos rayos gamma. Estos dos términos, rayos X y rayos gamma, se utilizan casi como sinónimos. Normalmente los rayos electromagnéticos procedentes de los núcleos se denominan rayos gamma, mientras que aquellos de alta energía procedentes de átomos se denominan rayos X, pero a la misma frecuencia son físicamente indistinguibles, no importa cuál sea su fuente. Si vamos a frecuencias aún más altas, digamos a 1024 ciclos por segundo, encontramos que podemos producir dichas ondas artificialmente, por ejemplo con el sincrotrón que existe aquí en el Caltech. Podemos hallar ondas electromagnéticas con frecuencias enormemente altas —incluso con una oscilación mil veces más rápida— en las ondas encontradas en los rayos cósmicos. Estas ondas no pueden ser controladas por nosotros. Física cuántica

Después de describir la idea de campo electromagnético, y de que este campo puede transportar ondas, pronto aprendemos que dichas ondas se comportan realmente de una manera extraña que parece muy poco ondulatoria. ¡A frecuencias más altas se comportan de forma mucho más parecida a partículas! Es la mecánica cuántica, descubierta inmediatamente después de 1920, la que explica este extraño comportamiento. En los años anteriores a 1920 la imagen del espacio como un espacio tridimensional, y del tiempo como algo separado, fue transformada por Einstein, primero en una combinación que llamamos espacio-tiempo y luego aún más en un espacio-tiempo curvo para representar la gravitación. De este modo, el «escenario» se cambió por el espacio-tiempo, y la gravitación es presumiblemente una alteración del espacio-tiempo. Luego se descubrió también que las reglas para los movimientos de las partículas eran incorrectas. Las reglas mecánicas para la «inercia» y las «fuerzas» son erróneas —las leyes de Newton son erróneas— en el mundo de los átomos. En su lugar se descubrió que las cosas a pequeña escala no se comportan como las cosas a gran escala. Esto es lo que hace la física difícil, y muy interesante. Es difícil porque a pequeña escala las cosas se comportan de una forma muy «poco natural»; no tenemos experiencia directa de ellas. Aquí las cosas no se comportan como nada que conozcamos, de modo que es imposible describir este comportamiento de otra manera que no sea una forma analítica. Es difícil, y requiere una gran imaginación. : 

Después de describir la idea de campo electromagnético, y de que este campo puede transportar ondas, pronto aprendemos que dichas ondas se comportan realmente de una manera extraña que parece muy poco ondulatoria. ¡A frecuencias más altas se comportan de forma mucho más parecida a partículas! Es la mecánica cuántica, descubierta inmediatamente después de 1920, la que explica este extraño comportamiento. En los años anteriores a 1920 la imagen del espacio como un espacio tridimensional, y del tiempo como algo separado, fue transformada por Einstein, primero en una combinación que llamamos espacio-tiempo y luego aún más en un espacio-tiempo curvo para representar la gravitación. De este modo, el «escenario» se cambió por el espacio-tiempo, y la gravitación es presumiblemente una alteración del espacio-tiempo. Luego se descubrió también que las reglas para los movimientos de las partículas eran incorrectas. Las reglas mecánicas para la «inercia» y las «fuerzas» son erróneas —las leyes de Newton son erróneas— en el mundo de los átomos. En su lugar se descubrió que las cosas a pequeña escala no se comportan como las cosas a gran escala. Esto es lo que hace la física difícil, y muy interesante. Es difícil porque a pequeña escala las cosas se comportan de una forma muy «poco natural»; no tenemos experiencia directa de ellas. Aquí las cosas no se comportan como nada que conozcamos, de modo que es imposible describir este comportamiento de otra manera que no sea una forma analítica. Es difícil, y requiere una gran imaginación.

La mecánica cuántica tiene muchos aspectos. En primer lugar, la idea de que una partícula tiene una posición definida y una velocidad definida ya no está permitida; es errónea. Para dar un ejemplo de lo errónea que es la física clásica existe una regla en la mecánica cuántica que dice que uno no puede saber a la vez dónde está algo y a qué velocidad se está moviendo. La incertidumbre del momento y la incertidumbre de la posición son complementarias, y el producto de las dos es constante. Podemos escribir la ley de esta forma: Δx Δp ≥ h/2π, pero la explicaremos luego con más detalle. Esta regla explica una paradoja muy misteriosa: si los átomos están formados de cargas más y menos, ¿por qué las cargas menos no se sitúan sencillamente encima de las cargas más (se atraen mutuamente) y se acercan hasta cancelarse completamente? ¿Por qué los átomos son tan grandes? ¿Por qué está el núcleo en el centro y los electrones a su alrededor? Se pensaba al principio que esto se debía a que el núcleo era grande; pero no, el núcleo es muy pequeño. El átomo tiene un diámetro de unos 10–8 cm. El núcleo tiene un diámetro de unos 10–13 cm. Si tuviéramos un átomo y quisiésemos ver el núcleo, tendríamos que ampliarlo hasta que el átomo completo tuviese el tamaño de una gran habitación, y el núcleo sería una simple mota que usted apenas podría ver a simple vista. Pero todo el peso del átomo está casi por completo en este núcleo infinitesimal. ¿Qué impide que los electrones caigan simplemente dentro? Este principio: si estuvieran en el núcleo sabríamos su posición exactamente, y el principio de incertidumbre exigiría entonces que tuvieran un momento muy grande (aunque incierto), es decir, una energía cinética muy grande. Con esta energía saldrían despedidos del núcleo. Ellos llegan a un compromiso: se permiten algún espacio para esta incertidumbre y luego se mueven con una cierta cantidad de movimiento mínimo de acuerdo con esta regla. (Recuerden que dijimos que cuando se enfría un cristal hasta el cero absoluto, los átomos no dejan de moverse, sino que aún se agitan. ¿Por qué? Si dejasen de moverse sabríamos dónde estaban y que tenían movimiento nulo, y eso está en contra del principio de incertidumbre. No podemos saber dónde están y con qué velocidad se están moviendo, ¡de modo que deben estar agitándose allí continuamente!) : 

La mecánica cuántica tiene muchos aspectos. En primer lugar, la idea de que una partícula tiene una posición definida y una velocidad definida ya no está permitida; es errónea. Para dar un ejemplo de lo errónea que es la física clásica existe una regla en la mecánica cuántica que dice que uno no puede saber a la vez dónde está algo y a qué velocidad se está moviendo. La incertidumbre del momento y la incertidumbre de la posición son complementarias, y el producto de las dos es constante. Podemos escribir la ley de esta forma: Δx Δp ≥ h/2π, pero la explicaremos luego con más detalle. Esta regla explica una paradoja muy misteriosa: si los átomos están formados de cargas más y menos, ¿por qué las cargas menos no se sitúan sencillamente encima de las cargas más (se atraen mutuamente) y se acercan hasta cancelarse completamente? ¿Por qué los átomos son tan grandes? ¿Por qué está el núcleo en el centro y los electrones a su alrededor? Se pensaba al principio que esto se debía a que el núcleo era grande; pero no, el núcleo es muy pequeño. El átomo tiene un diámetro de unos 10–8 cm. El núcleo tiene un diámetro de unos 10–13 cm. Si tuviéramos un átomo y quisiésemos ver el núcleo, tendríamos que ampliarlo hasta que el átomo completo tuviese el tamaño de una gran habitación, y el núcleo sería una simple mota que usted apenas podría ver a simple vista. Pero todo el peso del átomo está casi por completo en este núcleo infinitesimal. ¿Qué impide que los electrones caigan simplemente dentro? Este principio: si estuvieran en el núcleo sabríamos su posición exactamente, y el principio de incertidumbre exigiría entonces que tuvieran un momento muy grande (aunque incierto), es decir, una energía cinética muy grande. Con esta energía saldrían despedidos del núcleo. Ellos llegan a un compromiso: se permiten algún espacio para esta incertidumbre y luego se mueven con una cierta cantidad de movimiento mínimo de acuerdo con esta regla. (Recuerden que dijimos que cuando se enfría un cristal hasta el cero absoluto, los átomos no dejan de moverse, sino que aún se agitan. ¿Por qué? Si dejasen de moverse sabríamos dónde estaban y que tenían movimiento nulo, y eso está en contra del principio de incertidumbre. No podemos saber dónde están y con qué velocidad se están moviendo, ¡de modo que deben estar agitándose allí continuamente!)

Otro cambio muy interesante en las ideas y la filosofía de la ciencia que trajo la mecánica cuántica es este: no es posible predecir exactamente lo que va a suceder en cualquier circunstancia. Por ejemplo, es posible preparar un átomo que esté a punto de emitir luz, y podemos medir cuándo ha emitido la luz si registramos un fotón, algo que describiremos en breve. Sin embargo, no podemos predecir cuándo va a emitir la luz, o, en el caso de que haya varios átomos, cuál de ellos es el que va a hacerlo. Ustedes podrían decir que esto se debe a algunos «engranajes» internos que no hemos mirado suficientemente de cerca. No, no hay engranajes internos; la naturaleza, tal como la entendemos hoy, se comporta de tal modo que es fundamentalmente imposible hacer una predicción precisa de qué sucederá exactamente en un experimento dado. Esto es algo horrible; de hecho, los filósofos habían dicho antes que uno de los requisitos fundamentales de la ciencia es que siempre que ustedes fijen las mismas condiciones debe suceder lo mismo. Esto sencillamente no es cierto, no es una condición esencial de la ciencia. El hecho es que no suceden las mismas cosas, que sólo podemos encontrar un promedio estadístico de lo que va a suceder. De todas formas, la ciencia no ha colapsado por completo. Dicho sea de paso, los filósofos dicen muchas cosas acerca de lo que es absolutamente necesario para la ciencia, y siempre, hasta donde podemos ver, son bastante ingenuas y probablemente erróneas. Por ejemplo, algún filósofo dijo que es fundamental para la empresa científica que si un experimento se realiza en, digamos, Estocolmo, y luego se lleva a cabo el mismo experimento en, digamos, Quito, deben darse los mismos resultados. Esto es completamente falso. No es necesario que la ciencia sea así; puede ser un hecho experimental, pero no es necesario. Por ejemplo, si uno de los experimentos consiste en mirar al cielo y ver la aurora boreal en Estocolmo, ustedes no la verán en Quito; el fenómeno aquí es diferente. «Pero —dirán ustedes— esto es algo que tiene que ver con el exterior; ¿pueden ustedes encerrarse en una caja en Estocolmo y bajar las persianas, y obtener alguna diferencia? Ciertamente. Si tomamos un péndulo con una suspensión universal, lo desplazamos de la vertical y luego lo soltamos, entonces el péndulo oscilará casi en un plano, pero no del todo. Los planos de oscilación cambian lentamente en Estocolmo, pero no en Quito. Las persianas siguen estando bajadas. El hecho de que esto suceda no lleva a la destrucción de la ciencia. ¿Cuál es la hipótesis fundamental de la ciencia, la filosofía fundamental? La enunciamos en el primer capítulo: la única prueba de la validez de cualquier idea es el experimento. Si resulta que la mayoría de los experimentos dan lo mismo en Quito que en Estocolmo, entonces esta «mayoría de experimentos» se utilizará para formular alguna ley general, y se dirá que aquellos experimentos que no den el mismo resultado fueron consecuencia del entorno próximo a Estocolmo. Inventaremos alguna manera de resumir los resultados del experimento, y no se nos tiene que decir por adelantado qué aspecto tendrá. Si se nos dice que el mismo experimento producirá siempre el mismo resultado, que todo está muy bien, pero cuando lo intentamos no resulta, entonces no va bien. Simplemente tenemos que tomar lo que vemos, y formular entonces el resto de nuestras ideas en términos de nuestra experiencia real. : 

Otro cambio muy interesante en las ideas y la filosofía de la ciencia que trajo la mecánica cuántica es este: no es posible predecir exactamente lo que va a suceder en cualquier circunstancia. Por ejemplo, es posible preparar un átomo que esté a punto de emitir luz, y podemos medir cuándo ha emitido la luz si registramos un fotón, algo que describiremos en breve. Sin embargo, no podemos predecir cuándo va a emitir la luz, o, en el caso de que haya varios átomos, cuál de ellos es el que va a hacerlo. Ustedes podrían decir que esto se debe a algunos «engranajes» internos que no hemos mirado suficientemente de cerca. No, no hay engranajes internos; la naturaleza, tal como la entendemos hoy, se comporta de tal modo que es fundamentalmente imposible hacer una predicción precisa de qué sucederá exactamente en un experimento dado. Esto es algo horrible; de hecho, los filósofos habían dicho antes que uno de los requisitos fundamentales de la ciencia es que siempre que ustedes fijen las mismas condiciones debe suceder lo mismo. Esto sencillamente no es cierto, no es una condición esencial de la ciencia. El hecho es que no suceden las mismas cosas, que sólo podemos encontrar un promedio estadístico de lo que va a suceder. De todas formas, la ciencia no ha colapsado por completo. Dicho sea de paso, los filósofos dicen muchas cosas acerca de lo que es absolutamente necesario para la ciencia, y siempre, hasta donde podemos ver, son bastante ingenuas y probablemente erróneas. Por ejemplo, algún filósofo dijo que es fundamental para la empresa científica que si un experimento se realiza en, digamos, Estocolmo, y luego se lleva a cabo el mismo experimento en, digamos, Quito, deben darse los mismos resultados. Esto es completamente falso. No es necesario que la ciencia sea así; puede ser un hecho experimental, pero no es necesario. Por ejemplo, si uno de los experimentos consiste en mirar al cielo y ver la aurora boreal en Estocolmo, ustedes no la verán en Quito; el fenómeno aquí es diferente. «Pero —dirán ustedes— esto es algo que tiene que ver con el exterior; ¿pueden ustedes encerrarse en una caja en Estocolmo y bajar las persianas, y obtener alguna diferencia? Ciertamente. Si tomamos un péndulo con una suspensión universal, lo desplazamos de la vertical y luego lo soltamos, entonces el péndulo oscilará casi en un plano, pero no del todo. Los planos de oscilación cambian lentamente en Estocolmo, pero no en Quito. Las persianas siguen estando bajadas. El hecho de que esto suceda no lleva a la destrucción de la ciencia. ¿Cuál es la hipótesis fundamental de la ciencia, la filosofía fundamental? La enunciamos en el primer capítulo: la única prueba de la validez de cualquier idea es el experimento. Si resulta que la mayoría de los experimentos dan lo mismo en Quito que en Estocolmo, entonces esta «mayoría de experimentos» se utilizará para formular alguna ley general, y se dirá que aquellos experimentos que no den el mismo resultado fueron consecuencia del entorno próximo a Estocolmo. Inventaremos alguna manera de resumir los resultados del experimento, y no se nos tiene que decir por adelantado qué aspecto tendrá. Si se nos dice que el mismo experimento producirá siempre el mismo resultado, que todo está muy bien, pero cuando lo intentamos no resulta, entonces no va bien. Simplemente tenemos que tomar lo que vemos, y formular entonces el resto de nuestras ideas en términos de nuestra experiencia real.

Volviendo a la mecánica cuántica y la física fundamental, no podemos, por supuesto, entrar ahora en los detalles de los principios mecanocuánticos porque son bastante difíciles de entender. Supondremos que están allí, y proseguiremos para describir cuáles son algunas de las consecuencias. Una de las consecuencias es que las cosas que solemos considerar como ondas se comportan también como partículas, y las partículas se comportan como ondas; de hecho, todas las cosas se comportan de la misma forma. No hay distinción entre una onda y una partícula. De este modo, la mecánica cuántica unifica la idea del campo, con sus ondas, y la de partículas en una sola. Es cierto que cuando la frecuencia es baja, el aspecto de campo del fenómeno es más evidente, o más útil como descripción aproximada en términos de experiencias cotidianas. Pero a medida que aumenta la frecuencia, los aspectos de partícula del fenómeno se hacen más evidentes con el equipamiento con el que normalmente hacemos las medidas. De hecho, aunque mencionamos muchas frecuencias, todavía no se ha detectado directamente ningún fenómeno que implique una frecuencia superior a aproximadamente 1012 ciclos por segundo. Sólo deducimos las frecuencias superiores a partir de la energía de las partículas, mediante una regla que supone que es válida la idea partícula-onda de la mecánica cuántica. : 

Volviendo a la mecánica cuántica y la física fundamental, no podemos, por supuesto, entrar ahora en los detalles de los principios mecanocuánticos porque son bastante difíciles de entender. Supondremos que están allí, y proseguiremos para describir cuáles son algunas de las consecuencias. Una de las consecuencias es que las cosas que solemos considerar como ondas se comportan también como partículas, y las partículas se comportan como ondas; de hecho, todas las cosas se comportan de la misma forma. No hay distinción entre una onda y una partícula. De este modo, la mecánica cuántica unifica la idea del campo, con sus ondas, y la de partículas en una sola. Es cierto que cuando la frecuencia es baja, el aspecto de campo del fenómeno es más evidente, o más útil como descripción aproximada en términos de experiencias cotidianas. Pero a medida que aumenta la frecuencia, los aspectos de partícula del fenómeno se hacen más evidentes con el equipamiento con el que normalmente hacemos las medidas. De hecho, aunque mencionamos muchas frecuencias, todavía no se ha detectado directamente ningún fenómeno que implique una frecuencia superior a aproximadamente 1012 ciclos por segundo. Sólo deducimos las frecuencias superiores a partir de la energía de las partículas, mediante una regla que supone que es válida la idea partícula-onda de la mecánica cuántica.

Tenemos así una nueva visión de la interacción electromagnética. Tenemos un nuevo tipo de partícula que añadir al electrón, el protón y el neutrón. Esta nueva partícula se denomina fotón. Y la nueva visión de la interacción de electrones y protones que constituye la teoría electromagnética, pero ahora con todo correcto mecanocuánticamente, se denomina electrodinámica cuántica. Esta teoría fundamental de la interacción de luz y materia, o campo eléctrico y cargas, constituye nuestro mayor éxito hasta ahora en física. En esta sola teoría tenemos las reglas básicas para todos los fenómenos ordinarios excepto para la gravitación y los procesos nucleares. Por ejemplo, de la electrodinámica cuántica salen todas las leyes eléctricas, mecánicas y químicas: las leyes para el choque de bolas de billar, los movimientos de conductores en campos magnéticos, el calor específico del monóxido de carbono, el color de los tubos de neón, la densidad de la sal, y las reacciones del hidrógeno y el oxígeno para formar agua, son todas consecuencias de esta única ley. Todos estos detalles pueden ser calculados si la situación es suficientemente simple para hacer una aproximación, lo que no sucede casi nunca, aunque a menudo podemos entender más o menos lo que está sucediendo. Por el momento no se encuentran excepciones a las leyes de la electrodinámica cuántica fuera del núcleo, y no sabemos si dentro de él hay una excepción porque sencillamente no sabemos qué está sucediendo en el núcleo. : 

Tenemos así una nueva visión de la interacción electromagnética. Tenemos un nuevo tipo de partícula que añadir al electrón, el protón y el neutrón. Esta nueva partícula se denomina fotón. Y la nueva visión de la interacción de electrones y protones que constituye la teoría electromagnética, pero ahora con todo correcto mecanocuánticamente, se denomina electrodinámica cuántica. Esta teoría fundamental de la interacción de luz y materia, o campo eléctrico y cargas, constituye nuestro mayor éxito hasta ahora en física. En esta sola teoría tenemos las reglas básicas para todos los fenómenos ordinarios excepto para la gravitación y los procesos nucleares. Por ejemplo, de la electrodinámica cuántica salen todas las leyes eléctricas, mecánicas y químicas: las leyes para el choque de bolas de billar, los movimientos de conductores en campos magnéticos, el calor específico del monóxido de carbono, el color de los tubos de neón, la densidad de la sal, y las reacciones del hidrógeno y el oxígeno para formar agua, son todas consecuencias de esta única ley. Todos estos detalles pueden ser calculados si la situación es suficientemente simple para hacer una aproximación, lo que no sucede casi nunca, aunque a menudo podemos entender más o menos lo que está sucediendo. Por el momento no se encuentran excepciones a las leyes de la electrodinámica cuántica fuera del núcleo, y no sabemos si dentro de él hay una excepción porque sencillamente no sabemos qué está sucediendo en el núcleo.

En principio, entonces, la electrodinámica cuántica es la teoría de toda la química, y de la vida, si la vida se reduce finalmente a química, y por consiguiente a física porque la química ya está reducida (al ser ya conocida la parte de la física implicada en la química). Más aún, la misma electrodinámica cuántica, esta gran cosa, predice un montón de cosas nuevas. En primer lugar, predice las propiedades de fotones de muy alta energía, rayos gamma, etc. Predijo otra cosa muy notable: además del electrón debería haber otra partícula de la misma masa, pero de carga opuesta, llamada positrón, y ambas partículas, al encontrarse, podrían aniquilarse mutuamente con emisión de luz o rayos gamma. (Después de todo, la luz y los rayos gamma son lo mismo, son tan sólo diferentes puntos en una escala de frecuencias.) La generalización de esto, el hecho de que para cada partícula existe una antipartícula, resulta ser cierta. En el caso de los electrones, la antipartícula tiene otro nombre —se denomina un positrón, pero para la mayoría de las demás partículas se denomina anti-tal-o-cual, como antiprotón o antineutrón. En electrodinámica cuántica se introducen dos números y se supone que la mayoría de los otros números en el mundo salen de allí. Los dos números que se introducen se denominan la masa del electrón y la carga del electrón. En realidad, esto no es completamente cierto, pues tenemos todo un conjunto de números para la química que nos dice cuán pesados son los núcleos. Esto nos lleva a la siguiente parte. : 

En principio, entonces, la electrodinámica cuántica es la teoría de toda la química, y de la vida, si la vida se reduce finalmente a química, y por consiguiente a física porque la química ya está reducida (al ser ya conocida la parte de la física implicada en la química). Más aún, la misma electrodinámica cuántica, esta gran cosa, predice un montón de cosas nuevas. En primer lugar, predice las propiedades de fotones de muy alta energía, rayos gamma, etc. Predijo otra cosa muy notable: además del electrón debería haber otra partícula de la misma masa, pero de carga opuesta, llamada positrón, y ambas partículas, al encontrarse, podrían aniquilarse mutuamente con emisión de luz o rayos gamma. (Después de todo, la luz y los rayos gamma son lo mismo, son tan sólo diferentes puntos en una escala de frecuencias.) La generalización de esto, el hecho de que para cada partícula existe una antipartícula, resulta ser cierta. En el caso de los electrones, la antipartícula tiene otro nombre —se denomina un positrón, pero para la mayoría de las demás partículas se denomina anti-tal-o-cual, como antiprotón o antineutrón. En electrodinámica cuántica se introducen dos números y se supone que la mayoría de los otros números en el mundo salen de allí. Los dos números que se introducen se denominan la masa del electrón y la carga del electrón. En realidad, esto no es completamente cierto, pues tenemos todo un conjunto de números para la química que nos dice cuán pesados son los núcleos. Esto nos lleva a la siguiente parte. Núcleos y partículas

¿De qué están hechos los núcleos y cómo se mantienen unidos? Resulta que los núcleos se mantienen unidos por fuerzas enormes. Cuando los núcleos se liberan, la energía liberada es enorme comparada con la energía química, en la misma proporción que hay entre una explosión de una bomba atómica y una explosión de TNT, porque, por supuesto, la bomba atómica tiene que ver con cambios en el interior del núcleo, mientras que la explosión de TNT tiene que ver con cambios de los electrones en el exterior de los átomos. La cuestión es: ¿cuáles son las fuerzas que mantienen unidos los protones y los neutrones en el núcleo? De la misma forma que la interacción eléctrica puede relacionarse con una partícula, un fotón, Yukawa sugirió que las fuerzas entre neutrones y protones también tienen algún tipo de campo, y que cuando este campo se agita se comporta como una partícula. Así pues, podría haber algunas otras partículas en el mundo además de los protones y los neutrones, y él fue capaz de deducir las propiedades de estas partículas a partir de las características ya conocidas de las fuerzas nucleares. Por ejemplo, predijo que deberían tener una masa de doscientas o trescientas veces la masa de un electrón; ¡y, abracadabra, en los rayos cósmicos se descubrió una partícula con la masa correcta! Pero más tarde se vio que era la partícula equivocada. Se denominó un mesón-μ, o muón. : 

¿De qué están hechos los núcleos y cómo se mantienen unidos? Resulta que los núcleos se mantienen unidos por fuerzas enormes. Cuando los núcleos se liberan, la energía liberada es enorme comparada con la energía química, en la misma proporción que hay entre una explosión de una bomba atómica y una explosión de TNT, porque, por supuesto, la bomba atómica tiene que ver con cambios en el interior del núcleo, mientras que la explosión de TNT tiene que ver con cambios de los electrones en el exterior de los átomos. La cuestión es: ¿cuáles son las fuerzas que mantienen unidos los protones y los neutrones en el núcleo? De la misma forma que la interacción eléctrica puede relacionarse con una partícula, un fotón, Yukawa sugirió que las fuerzas entre neutrones y protones también tienen algún tipo de campo, y que cuando este campo se agita se comporta como una partícula. Así pues, podría haber algunas otras partículas en el mundo además de los protones y los neutrones, y él fue capaz de deducir las propiedades de estas partículas a partir de las características ya conocidas de las fuerzas nucleares. Por ejemplo, predijo que deberían tener una masa de doscientas o trescientas veces la masa de un electrón; ¡y, abracadabra, en los rayos cósmicos se descubrió una partícula con la masa correcta! Pero más tarde se vio que era la partícula equivocada. Se denominó un mesón-μ, o muón.

Sin embargo, un poco después, en 1947 o 1948, se encontró otra partícula, el mesón-π, o pión, que satisfacía el criterio de Yukawa. Además del protón y el neutrón, para tener fuerzas nucleares de hemos añadir el pión. Ahora ustedes dirán: «¡Qué grande!, hagamos con esta teoría la nucleodinámica cuántica, utilizando los piones tal como precisamente quería hacerlo Yukawa, y veamos si funciona, y entonces todo quedará explicado». Mala suerte. Resulta que los cálculos implicados en esta teoría son tan difíciles que nadie ha sido nunca capaz de calcular cuáles son las consecuencias de la teoría, o comprobarla experimentalmente, y ¡esto ha estado sucediendo durante casi veinte años! : 

Sin embargo, un poco después, en 1947 o 1948, se encontró otra partícula, el mesón-π, o pión, que satisfacía el criterio de Yukawa. Además del protón y el neutrón, para tener fuerzas nucleares de hemos añadir el pión. Ahora ustedes dirán: «¡Qué grande!, hagamos con esta teoría la nucleodinámica cuántica, utilizando los piones tal como precisamente quería hacerlo Yukawa, y veamos si funciona, y entonces todo quedará explicado». Mala suerte. Resulta que los cálculos implicados en esta teoría son tan difíciles que nadie ha sido nunca capaz de calcular cuáles son las consecuencias de la teoría, o comprobarla experimentalmente, y ¡esto ha estado sucediendo durante casi veinte años!

Así que estamos bloqueados con una teoría, y no sabemos si es correcta o errónea, aunque sabemos que es algo errónea, o al menos incompleta. Mientras nosotros hemos estado divagando teóricamente, tratando de calcular las consecuencias de esta teoría, los físicos experimentales han estado descubriendo algunas cosas. Por ejemplo, ellos ya habían descubierto este mesón— μ o muón, y nosotros no sabemos aún dónde encaja. También en los rayos cósmicos se encontró un gran número de otras partículas «extra». Resulta que hoy tenemos aproximadamente treinta partículas, y es muy difícil comprender las relaciones entre todas estas partículas y para qué las quiere la naturaleza, o cuáles son los vínculos entre unas y otras. Hoy no entendemos estas diversas partículas como aspectos diferentes de la misma cosa, y el hecho de que tengamos tantas partículas inconexas es un reflejo del hecho de que tenemos mucha información inconexa sin una buena teoría. Comparado con los grandes éxitos de la electrodinámica cuántica, el conocimiento que se tiene de la física nuclear es conocimiento aproximado, a mitad de camino entre la experiencia y la teoría: se supone un tipo de fuerza entre protones y neutrones y se trata de ver qué sucederá, pero sin entender realmente de dónde procede la fuerza. Aparte de esto, hemos hecho muy pocos progresos. Hemos coleccionado un número enorme de elementos químicos. En el caso de la química apareció de repente una relación entre dichos elementos que no se esperaba y que está incorporada en la tabla periódica de Mendeleiev. Por ejemplo, el sodio y el potasio tienen casi las mismas propiedades químicas y se encuentran en la misma columna de la tabla de Mendeleiev. Hemos estado buscando una tabla del tipo de la de Mendeleiev para las nuevas partículas. Una de estas tablas de las nuevas partículas fue construida de forma independiente por Gell-Mann en los Estados Unidos y Nishijima en Japón. Su clasificación se basa en un nuevo número, similar a la carga eléctrica, que puede asignarse a cada partícula, y se denomina «extrañeza», S. Este número se conserva, como la carga eléctrica, en las reacciones que tienen lugar mediante fuerzas nucleares. : 

Así que estamos bloqueados con una teoría, y no sabemos si es correcta o errónea, aunque sabemos que es algo errónea, o al menos incompleta. Mientras nosotros hemos estado divagando teóricamente, tratando de calcular las consecuencias de esta teoría, los físicos experimentales han estado descubriendo algunas cosas. Por ejemplo, ellos ya habían descubierto este mesón— μ o muón, y nosotros no sabemos aún dónde encaja. También en los rayos cósmicos se encontró un gran número de otras partículas «extra». Resulta que hoy tenemos aproximadamente treinta partículas, y es muy difícil comprender las relaciones entre todas estas partículas y para qué las quiere la naturaleza, o cuáles son los vínculos entre unas y otras. Hoy no entendemos estas diversas partículas como aspectos diferentes de la misma cosa, y el hecho de que tengamos tantas partículas inconexas es un reflejo del hecho de que tenemos mucha información inconexa sin una buena teoría. Comparado con los grandes éxitos de la electrodinámica cuántica, el conocimiento que se tiene de la física nuclear es conocimiento aproximado, a mitad de camino entre la experiencia y la teoría: se supone un tipo de fuerza entre protones y neutrones y se trata de ver qué sucederá, pero sin entender realmente de dónde procede la fuerza. Aparte de esto, hemos hecho muy pocos progresos. Hemos coleccionado un número enorme de elementos químicos. En el caso de la química apareció de repente una relación entre dichos elementos que no se esperaba y que está incorporada en la tabla periódica de Mendeleiev. Por ejemplo, el sodio y el potasio tienen casi las mismas propiedades químicas y se encuentran en la misma columna de la tabla de Mendeleiev. Hemos estado buscando una tabla del tipo de la de Mendeleiev para las nuevas partículas. Una de estas tablas de las nuevas partículas fue construida de forma independiente por Gell-Mann en los Estados Unidos y Nishijima en Japón. Su clasificación se basa en un nuevo número, similar a la carga eléctrica, que puede asignarse a cada partícula, y se denomina «extrañeza», S. Este número se conserva, como la carga eléctrica, en las reacciones que tienen lugar mediante fuerzas nucleares.

En el cuadro 2.2 se da la lista de todas las partículas. No podemos discutirlas mucho en esta etapa, pero el cuadro les mostrará al menos cuánto ignoramos. Debajo de cada partícula se da su masa en una unidad determinada, llamada MeV Un MeV es igual a 1,782 x 10–27 gramos. La razón por la que fue escogida esta unidad es histórica, y no entraremos en ello ahora. Las partículas más masivas se sitúan más arriba en el cuadro; vemos que un neutrón y un protón tienen casi la misma masa. En columnas verticales hemos colocado las partículas con la misma carga eléctrica: todos los objetos neutros en una columna, todos los cargados positivamente a la derecha de ésta, y todos los objetos cargados negativamente a la izquierda. : 

En el cuadro 2.2 se da la lista de todas las partículas. No podemos discutirlas mucho en esta etapa, pero el cuadro les mostrará al menos cuánto ignoramos. Debajo de cada partícula se da su masa en una unidad determinada, llamada MeV Un MeV es igual a 1,782 x 10–27 gramos. La razón por la que fue escogida esta unidad es histórica, y no entraremos en ello ahora. Las partículas más masivas se sitúan más arriba en el cuadro; vemos que un neutrón y un protón tienen casi la misma masa. En columnas verticales hemos colocado las partículas con la misma carga eléctrica: todos los objetos neutros en una columna, todos los cargados positivamente a la derecha de ésta, y todos los objetos cargados negativamente a la izquierda.

Las partículas se muestran con una línea continua y las «resonancias» con una línea a trazos. Se han omitido varias partículas del cuadro. Entre las omitidas se incluyen las importantes partículas de masa nula y carga nula, el fotón y el gravitón, que no entran en el esquema clasificatorio barión-mesón-leptón, y también algunas de las resonancias más recientes (k*, φ, η). Las antipartículas de los mesones figuran en el cuadro, pero las antipartículas de los leptones y bariones tendrían que darse en otro cuadro exactamente igual a éste pero reflejadas en la columna de carga cero. Aunque todas las partículas salvo el electrón, el neutrino, el fotón, el gravitón y el protón son inestables, sólo se han mostrado los productos de la desintegración para las resonancias. Las asignaciones de extrañeza no son aplicables a los leptones, puesto que no interaccionan fuertemente con los núcleos. : 

Las partículas se muestran con una línea continua y las «resonancias» con una línea a trazos. Se han omitido varias partículas del cuadro. Entre las omitidas se incluyen las importantes partículas de masa nula y carga nula, el fotón y el gravitón, que no entran en el esquema clasificatorio barión-mesón-leptón, y también algunas de las resonancias más recientes (k*, φ, η). Las antipartículas de los mesones figuran en el cuadro, pero las antipartículas de los leptones y bariones tendrían que darse en otro cuadro exactamente igual a éste pero reflejadas en la columna de carga cero. Aunque todas las partículas salvo el electrón, el neutrino, el fotón, el gravitón y el protón son inestables, sólo se han mostrado los productos de la desintegración para las resonancias. Las asignaciones de extrañeza no son aplicables a los leptones, puesto que no interaccionan fuertemente con los núcleos.

2.2 Partículas elementales. : 

2.2 Partículas elementales.

Todas las partículas que están junto a los neutrones y los protones se denominan bariones, y existen los siguientes: hay una partícula «lambda», con una masa de 1.154 MeV y otras tres, llamadas sigmas, menos, neutra y más, con masas diferentes pero casi iguales. Hay grupos o multipletes casi de la misma masa, con una diferencia de un 1 o un 2 por 100. Todas las partículas de un multiplete dado tienen la misma extrañeza. El primer multiplete es el doblete protón-neutrón, y luego hay un singlete (el lambda), luego el triplete sigma, y finalmente el doblete xi. Muy recientemente, en 1961, se encontraron algunas partículas más. Pero ¿son partículas? Viven un tiempo tan corto, se desintegran casi instantáneamente en cuanto se han formado, que no sabemos si deberían ser consideradas como nuevas partículas o como algún tipo de interacción de «resonancia» de cierta energía definida entre los productos Λ y π en los que se desintegra. : 

Todas las partículas que están junto a los neutrones y los protones se denominan bariones, y existen los siguientes: hay una partícula «lambda», con una masa de 1.154 MeV y otras tres, llamadas sigmas, menos, neutra y más, con masas diferentes pero casi iguales. Hay grupos o multipletes casi de la misma masa, con una diferencia de un 1 o un 2 por 100. Todas las partículas de un multiplete dado tienen la misma extrañeza. El primer multiplete es el doblete protón-neutrón, y luego hay un singlete (el lambda), luego el triplete sigma, y finalmente el doblete xi. Muy recientemente, en 1961, se encontraron algunas partículas más. Pero ¿son partículas? Viven un tiempo tan corto, se desintegran casi instantáneamente en cuanto se han formado, que no sabemos si deberían ser consideradas como nuevas partículas o como algún tipo de interacción de «resonancia» de cierta energía definida entre los productos Λ y π en los que se desintegra.

Además de los bariones, las otras partículas implicadas en la interacción nuclear se denominan mesones. Están en primer lugar los piones, que se dan en tres variedades, positiva, negativa y neutra; forman otro multiplete. También hemos encontrado algunas cosas nuevas denominadas mesones-K, y se dan como un doblete, K+ y K°. Además, cada partícula tiene su antipartícula, a menos que una partícula sea su propia antipartícula. Por ejemplo, el π– y el π+ son antipartículas uno del otro, pero el π° es su propia antipartícula. El K– y el K+ son antipartículas uno del otro, como lo son el K° y el K’°. Además, en 1961 se encontraron también algunos mesones más o quizá mesones que se desintegran casi inmediatamente. Algo llamado ω que se desintegra en tres piones tiene una masa de 780 en esta escala, y con algo menos de seguridad hay un objeto que se desintegra en dos piones. Estas partículas, llamadas mesones y bariones, y las antipartículas de los mesones están en la misma tabla, pero las antipartículas de los bariones deben colocarse en otra tabla, «reflejada» en la columna de carga cero. : 

Además de los bariones, las otras partículas implicadas en la interacción nuclear se denominan mesones. Están en primer lugar los piones, que se dan en tres variedades, positiva, negativa y neutra; forman otro multiplete. También hemos encontrado algunas cosas nuevas denominadas mesones-K, y se dan como un doblete, K+ y K°. Además, cada partícula tiene su antipartícula, a menos que una partícula sea su propia antipartícula. Por ejemplo, el π– y el π+ son antipartículas uno del otro, pero el π° es su propia antipartícula. El K– y el K+ son antipartículas uno del otro, como lo son el K° y el K’°. Además, en 1961 se encontraron también algunos mesones más o quizá mesones que se desintegran casi inmediatamente. Algo llamado ω que se desintegra en tres piones tiene una masa de 780 en esta escala, y con algo menos de seguridad hay un objeto que se desintegra en dos piones. Estas partículas, llamadas mesones y bariones, y las antipartículas de los mesones están en la misma tabla, pero las antipartículas de los bariones deben colocarse en otra tabla, «reflejada» en la columna de carga cero.

De la misma forma que la tabla de Mendeleiev era muy buena, excepto por el hecho de que había un número de elementos de tierras raras que colgaban algo sueltos, también tenemos algunas cosas que cuelgan algo sueltas de esta tabla: partículas que no interaccionan fuertemente en los núcleos, no tienen nada que ver con la interacción nuclear, y no tienen una interacción fuerte (entiendo por esto el poderoso tipo de interacción de la energía nuclear). Éstas se denominan leptones, y son los siguientes: está el electrón, que tiene una masa muy pequeña en esta escala, tan sólo 0,510 MeV. Luego hay otra, el mesón-π, el muón, que tiene una masa mucho mayor, 206 veces más pesada que un electrón. Hasta donde podemos decir, por todos los experimentos realizados hasta ahora, el electrón y el muón sólo difieren en la masa. Todo funciona exactamente igual para el muón que para el electrón, excepto que uno es más pesado que el otro. ¿Por qué hay uno más pesado que otro; para qué sirve? No lo sabemos. Además, existe un leptón que es neutro, denominado un neutrino, y esta partícula tiene masa nula. De hecho, ahora se sabe que existen dos tipos diferentes de neutrinos, uno relacionado con los electrones y el otro relacionado con los muones. : 

De la misma forma que la tabla de Mendeleiev era muy buena, excepto por el hecho de que había un número de elementos de tierras raras que colgaban algo sueltos, también tenemos algunas cosas que cuelgan algo sueltas de esta tabla: partículas que no interaccionan fuertemente en los núcleos, no tienen nada que ver con la interacción nuclear, y no tienen una interacción fuerte (entiendo por esto el poderoso tipo de interacción de la energía nuclear). Éstas se denominan leptones, y son los siguientes: está el electrón, que tiene una masa muy pequeña en esta escala, tan sólo 0,510 MeV. Luego hay otra, el mesón-π, el muón, que tiene una masa mucho mayor, 206 veces más pesada que un electrón. Hasta donde podemos decir, por todos los experimentos realizados hasta ahora, el electrón y el muón sólo difieren en la masa. Todo funciona exactamente igual para el muón que para el electrón, excepto que uno es más pesado que el otro. ¿Por qué hay uno más pesado que otro; para qué sirve? No lo sabemos. Además, existe un leptón que es neutro, denominado un neutrino, y esta partícula tiene masa nula. De hecho, ahora se sabe que existen dos tipos diferentes de neutrinos, uno relacionado con los electrones y el otro relacionado con los muones.

Finalmente, tenemos otras dos partículas que no interaccionan fuertemente con las nucleares: una es el fotón, y quizá, si el campo gravitatorio tiene también un análogo mecanocuántico (todavía no se ha elaborado una teoría cuántica de la gravitación), entonces habrá una partícula, un gravitón, que tendrá masa nula. : 

Finalmente, tenemos otras dos partículas que no interaccionan fuertemente con las nucleares: una es el fotón, y quizá, si el campo gravitatorio tiene también un análogo mecanocuántico (todavía no se ha elaborado una teoría cuántica de la gravitación), entonces habrá una partícula, un gravitón, que tendrá masa nula.

¿Qué es esta «masa nula»? Las masas dadas aquí son las masas de las partículas en reposo. El hecho de que una partícula tenga masa nula significa, en cierto modo, que no puede estar en reposo. Un fotón nunca está en reposo, siempre se está moviendo a 300.000 km por segundo. Entenderemos mejor lo que significa esta masa cuando comprendamos la teoría de la relatividad, lo que llegará a su debido tiempo. : 

¿Qué es esta «masa nula»? Las masas dadas aquí son las masas de las partículas en reposo. El hecho de que una partícula tenga masa nula significa, en cierto modo, que no puede estar en reposo. Un fotón nunca está en reposo, siempre se está moviendo a 300.000 km por segundo. Entenderemos mejor lo que significa esta masa cuando comprendamos la teoría de la relatividad, lo que llegará a su debido tiempo.

2.3 Interacciones elementales Acoplamiento Intensidad Ley Fotón con partículas cargadas ≈10–2 Conocida Gravedad con cualquier energía ≈10–40 Conocida Desintegraciones débiles ≈10–5 Parcialmente conocida Mesones con bariones ≈1 Desconocida (alguna regla conocida) : 

2.3 Interacciones elementales Acoplamiento Intensidad Ley Fotón con partículas cargadas ≈10–2 Conocida Gravedad con cualquier energía ≈10–40 Conocida Desintegraciones débiles ≈10–5 Parcialmente conocida Mesones con bariones ≈1 Desconocida (alguna regla conocida)

De este modo nos enfrentamos a un gran número de partículas que, en conjunto, parecen ser los constituyentes fundamentales de la materia. Afortunadamente, estas partículas no son todas diferentes respecto a sus interacciones mutuas. De hecho, parece haber sólo cuatro tipos de interacción entre partículas que, en orden de intensidad decreciente, son la fuerza nuclear, las interacciones eléctricas, la interacción de la desintegración-beta y la gravedad. El fotón se acopla a todas las partículas cargadas y la intensidad de la interacción se mide por cierto número cuyo valor es 1/137. Se conoce la ley detallada de este acoplamiento, que es la electrodinámica cuántica. La gravedad se acopla con cualquier energía, pero su acoplamiento es extraordinariamente débil, mucho más débil que el de la electricidad. Esta ley es también conocida. Luego existen las denominadas desintegraciones débiles: la desintegración-beta, que provoca que el neutrón se desintegre en un protón, un electrón y un neutrino, de forma relativamente lenta. Esta ley sólo se conoce en parte. La denominada interacción fuerte, la interacción mesón-barión, tiene una intensidad de 1 en esta escala, y la ley es completamente desconocida, aunque existe un cierto número de reglas conocidas, tales como que el número total de bariones no cambia en ninguna reacción. : 

De este modo nos enfrentamos a un gran número de partículas que, en conjunto, parecen ser los constituyentes fundamentales de la materia. Afortunadamente, estas partículas no son todas diferentes respecto a sus interacciones mutuas. De hecho, parece haber sólo cuatro tipos de interacción entre partículas que, en orden de intensidad decreciente, son la fuerza nuclear, las interacciones eléctricas, la interacción de la desintegración-beta y la gravedad. El fotón se acopla a todas las partículas cargadas y la intensidad de la interacción se mide por cierto número cuyo valor es 1/137. Se conoce la ley detallada de este acoplamiento, que es la electrodinámica cuántica. La gravedad se acopla con cualquier energía, pero su acoplamiento es extraordinariamente débil, mucho más débil que el de la electricidad. Esta ley es también conocida. Luego existen las denominadas desintegraciones débiles: la desintegración-beta, que provoca que el neutrón se desintegre en un protón, un electrón y un neutrino, de forma relativamente lenta. Esta ley sólo se conoce en parte. La denominada interacción fuerte, la interacción mesón-barión, tiene una intensidad de 1 en esta escala, y la ley es completamente desconocida, aunque existe un cierto número de reglas conocidas, tales como que el número total de bariones no cambia en ninguna reacción.

Esta es la horrible situación de nuestra física actual. Para resumirla, yo diría esto: fuera del núcleo, parece que lo conocemos todo; dentro de él, la mecánica cuántica es válida: no se ha encontrado ningún fallo en los principios de la mecánica cuántica. El escenario en el que situamos todo nuestro conocimiento, por así decir, es el espacio-tiempo relativista; quizá la gravedad está implicada en el espacio-tiempo. No sabemos cómo comenzó el universo, y nunca hemos hecho experimentos que pongan a prueba con precisión nuestras ideas de espacio y tiempo por debajo de alguna distancia minúscula, de modo que solamente sabemos que nuestras ideas funcionan por encima de dicha distancia. Deberíamos añadir también que las reglas del juego son los principios mecanocuánticos, y dichos principios se aplican, hasta donde podemos decir, tanto a las nuevas partículas como a las viejas. El origen de las fuerzas en los núcleos nos lleva a nuevas partículas, pero por desgracia éstas aparecen en gran profusión y carecemos de una comprensión completa de su interrelación, aunque ya sabemos que existen algunas relaciones muy sorprendentes entre ellas. Parece que poco a poco vamos a tientas hacia una comprensión del mundo de las partículas subatómicas, pero realmente aún no sabemos hasta dónde tendremos que seguir en esta tarea. : 

Esta es la horrible situación de nuestra física actual. Para resumirla, yo diría esto: fuera del núcleo, parece que lo conocemos todo; dentro de él, la mecánica cuántica es válida: no se ha encontrado ningún fallo en los principios de la mecánica cuántica. El escenario en el que situamos todo nuestro conocimiento, por así decir, es el espacio-tiempo relativista; quizá la gravedad está implicada en el espacio-tiempo. No sabemos cómo comenzó el universo, y nunca hemos hecho experimentos que pongan a prueba con precisión nuestras ideas de espacio y tiempo por debajo de alguna distancia minúscula, de modo que solamente sabemos que nuestras ideas funcionan por encima de dicha distancia. Deberíamos añadir también que las reglas del juego son los principios mecanocuánticos, y dichos principios se aplican, hasta donde podemos decir, tanto a las nuevas partículas como a las viejas. El origen de las fuerzas en los núcleos nos lleva a nuevas partículas, pero por desgracia éstas aparecen en gran profusión y carecemos de una comprensión completa de su interrelación, aunque ya sabemos que existen algunas relaciones muy sorprendentes entre ellas. Parece que poco a poco vamos a tientas hacia una comprensión del mundo de las partículas subatómicas, pero realmente aún no sabemos hasta dónde tendremos que seguir en esta tarea.

Slide 202: 

— 3 —

La relación de la física con las otras ciencias : 

La relación de la física con las otras ciencias Introducción

La física es la más fundamental y general de las ciencias, y ha tenido un efecto profundo sobre todo el desarrollo científico. De hecho, la física es el equivalente actual a lo que se solía llamar filosofía natural, de la que surgieron la mayoría de nuestras ciencias modernas. Quienes estudian muchos otros campos tienen que estudiar también física debido al papel básico que ésta desempeña en todos los fenómenos. En este capítulo trataremos de explicar cuáles son los problemas fundamentales en las otras ciencias, aunque, por supuesto, es imposible tratar en un espacio tan pequeño las materias complejas, sutiles y bellas que constituyen estos otros campos. La falta de espacio nos impide también discutir las relaciones de la física con la ingeniería, la industria, la sociedad y la guerra, e incluso la relación más notable entre matemáticas y física. (La matemática no es una ciencia desde nuestro punto de vista, en el sentido de que no es una ciencia natural. La prueba de su validez no es el experimento.) Dicho sea de paso, debemos dejar claro de entrada que el hecho de que algo no sea una ciencia no quiere decir necesariamente que sea malo. Por ejemplo, el amor no es una ciencia. Por lo tanto, si se dice que algo no es una ciencia, no quiere decir que haya algo erróneo en ello; quiere decir simplemente que no es una ciencia. : 

La física es la más fundamental y general de las ciencias, y ha tenido un efecto profundo sobre todo el desarrollo científico. De hecho, la física es el equivalente actual a lo que se solía llamar filosofía natural, de la que surgieron la mayoría de nuestras ciencias modernas. Quienes estudian muchos otros campos tienen que estudiar también física debido al papel básico que ésta desempeña en todos los fenómenos. En este capítulo trataremos de explicar cuáles son los problemas fundamentales en las otras ciencias, aunque, por supuesto, es imposible tratar en un espacio tan pequeño las materias complejas, sutiles y bellas que constituyen estos otros campos. La falta de espacio nos impide también discutir las relaciones de la física con la ingeniería, la industria, la sociedad y la guerra, e incluso la relación más notable entre matemáticas y física. (La matemática no es una ciencia desde nuestro punto de vista, en el sentido de que no es una ciencia natural. La prueba de su validez no es el experimento.) Dicho sea de paso, debemos dejar claro de entrada que el hecho de que algo no sea una ciencia no quiere decir necesariamente que sea malo. Por ejemplo, el amor no es una ciencia. Por lo tanto, si se dice que algo no es una ciencia, no quiere decir que haya algo erróneo en ello; quiere decir simplemente que no es una ciencia. Química

La ciencia que quizá está más profundamente afectada por la física es la química. Históricamente, la química empezó siendo casi exclusivamente lo que ahora llamamos química inorgánica, la química de las sustancias que no están asociadas con los seres vivos. Se necesitó mucho trabajo analítico para descubrir la existencia de los diversos elementos y sus relaciones: cómo se forman los diversos compuestos relativamente simples encontrados en las rocas, la tierra, etc. Esta química primitiva fue muy importante para la física. La interacción entre las dos ciencias fue muy intensa porque la teoría de los átomos estaba apoyada en gran medida en experimentos de química. La teoría de la química, o sea, de las propias reacciones, estaba resumida en gran medida en la tabla periódica de Mendeleiev, que revelaba muchas relaciones extrañas entre los diversos elementos; y fue la colección de reglas acerca de qué sustancias se combinaban con cuáles, y cómo, lo que constituyó la química inorgánica. Todas estas reglas fueron finalmente explicadas por la mecánica cuántica, de modo que la química teórica es de hecho física. Por otra parte, debe resaltarse que se trata de una explicación en teoría. Ya hemos discutido la diferencia entre conocer las reglas del juego de ajedrez y ser capaz de jugarlo. Por eso podemos conocer las reglas y no ser capaces de jugar muy bien. Resulta que es muy difícil predecir exactamente lo que sucederá en una reacción química dada; en cualquier caso, la parte más profunda de la química teórica debe terminar en la mecánica cuántica. : 

La ciencia que quizá está más profundamente afectada por la física es la química. Históricamente, la química empezó siendo casi exclusivamente lo que ahora llamamos química inorgánica, la química de las sustancias que no están asociadas con los seres vivos. Se necesitó mucho trabajo analítico para descubrir la existencia de los diversos elementos y sus relaciones: cómo se forman los diversos compuestos relativamente simples encontrados en las rocas, la tierra, etc. Esta química primitiva fue muy importante para la física. La interacción entre las dos ciencias fue muy intensa porque la teoría de los átomos estaba apoyada en gran medida en experimentos de química. La teoría de la química, o sea, de las propias reacciones, estaba resumida en gran medida en la tabla periódica de Mendeleiev, que revelaba muchas relaciones extrañas entre los diversos elementos; y fue la colección de reglas acerca de qué sustancias se combinaban con cuáles, y cómo, lo que constituyó la química inorgánica. Todas estas reglas fueron finalmente explicadas por la mecánica cuántica, de modo que la química teórica es de hecho física. Por otra parte, debe resaltarse que se trata de una explicación en teoría. Ya hemos discutido la diferencia entre conocer las reglas del juego de ajedrez y ser capaz de jugarlo. Por eso podemos conocer las reglas y no ser capaces de jugar muy bien. Resulta que es muy difícil predecir exactamente lo que sucederá en una reacción química dada; en cualquier caso, la parte más profunda de la química teórica debe terminar en la mecánica cuántica.

Existe también una rama de la física y la química que fue desarrollada por ambas ciencias a la par, y que es extraordinariamente importante. Se trata de los métodos estadísticos aplicados a situaciones para las que existen leyes mecánicas, lo que con propiedad se denomina mecánica estadística. En cualquier situación química están implicados un gran número de átomos, y hemos visto que todos los átomos están agitándose de una forma muy aleatoria y complicada. Si pudiéramos analizar cada colisión y ser capaces de seguir en detalle el movimiento de cada molécula, quizá podríamos calcular lo que iba a suceder, pero los enormes números necesarios para seguir la pista a todas estas moléculas superan tan abrumadoramente la capacidad de cualquier ordenador, y ciertamente la capacidad del cerebro, que se hacía necesario desarrollar un método para tratar con situaciones tan complicadas. La mecánica estadística es entonces la ciencia de los fenómenos del calor, o termodinámica. La química inorgánica, como ciencia, está ahora reducida esencialmente a lo que se denominan química física y química cuántica; la química física para estudiar las velocidades a las que tienen lugar las reacciones y lo que está sucediendo en detalle (¿cómo chocan las moléculas?, ¿qué fragmentos se desprenden primero?, etc.), y la química cuántica para ayudar a entender lo que sucede en términos de las leyes físicas. : 

Existe también una rama de la física y la química que fue desarrollada por ambas ciencias a la par, y que es extraordinariamente importante. Se trata de los métodos estadísticos aplicados a situaciones para las que existen leyes mecánicas, lo que con propiedad se denomina mecánica estadística. En cualquier situación química están implicados un gran número de átomos, y hemos visto que todos los átomos están agitándose de una forma muy aleatoria y complicada. Si pudiéramos analizar cada colisión y ser capaces de seguir en detalle el movimiento de cada molécula, quizá podríamos calcular lo que iba a suceder, pero los enormes números necesarios para seguir la pista a todas estas moléculas superan tan abrumadoramente la capacidad de cualquier ordenador, y ciertamente la capacidad del cerebro, que se hacía necesario desarrollar un método para tratar con situaciones tan complicadas. La mecánica estadística es entonces la ciencia de los fenómenos del calor, o termodinámica. La química inorgánica, como ciencia, está ahora reducida esencialmente a lo que se denominan química física y química cuántica; la química física para estudiar las velocidades a las que tienen lugar las reacciones y lo que está sucediendo en detalle (¿cómo chocan las moléculas?, ¿qué fragmentos se desprenden primero?, etc.), y la química cuántica para ayudar a entender lo que sucede en términos de las leyes físicas.

La otra rama de la química es la química orgánica, la química de las sustancias que están asociadas con seres vivos. Durante un tiempo se creyó que las sustancias que están asociadas con seres vivos eran tan maravillosas que no podían fabricarse artificialmente a partir de materiales inorgánicos. Esto no es cierto en absoluto: son simplemente las mismas sustancias fabricadas en la química inorgánica, aunque ahora estén implicadas disposiciones más complejas de átomos. La química orgánica tiene obviamente una relación muy estrecha con la biología que le suministra sus sustancias, y con la industria; y además, mucha química física y mucha mecánica cuántica pueden aplicarse a los compuestos orgánicos tanto como a los inorgánicos. Sin embargo, los principales problemas de la química orgánica no radican en estos aspectos, sino más bien en el análisis y la síntesis de las sustancias que se forman en sistemas biológicos, en seres vivos. Esto conduce imperceptiblemente, paso a paso, hacia la bioquímica, y luego a la propia biología, o la biología molecular. : 

La otra rama de la química es la química orgánica, la química de las sustancias que están asociadas con seres vivos. Durante un tiempo se creyó que las sustancias que están asociadas con seres vivos eran tan maravillosas que no podían fabricarse artificialmente a partir de materiales inorgánicos. Esto no es cierto en absoluto: son simplemente las mismas sustancias fabricadas en la química inorgánica, aunque ahora estén implicadas disposiciones más complejas de átomos. La química orgánica tiene obviamente una relación muy estrecha con la biología que le suministra sus sustancias, y con la industria; y además, mucha química física y mucha mecánica cuántica pueden aplicarse a los compuestos orgánicos tanto como a los inorgánicos. Sin embargo, los principales problemas de la química orgánica no radican en estos aspectos, sino más bien en el análisis y la síntesis de las sustancias que se forman en sistemas biológicos, en seres vivos. Esto conduce imperceptiblemente, paso a paso, hacia la bioquímica, y luego a la propia biología, o la biología molecular. Biología

Así es como llegamos a la ciencia de la biología, que es el estudio de los seres vivos. En los primeros días de la biología los biólogos tenían que tratar el problema puramente descriptivo de descubrir qué seres vivos había, y así tenían simplemente que contar cosas tales como los pelos de las patas de las moscas. Una vez que todas estas materias hubieran sido desarrolladas con una gran dedicación, los biólogos se adentraron en la maquinaria interior de los cuerpos vivientes, primero desde un punto de vista muy general, naturalmente, porque se necesita algún esfuerzo para entrar en los detalles más finos. : 

Así es como llegamos a la ciencia de la biología, que es el estudio de los seres vivos. En los primeros días de la biología los biólogos tenían que tratar el problema puramente descriptivo de descubrir qué seres vivos había, y así tenían simplemente que contar cosas tales como los pelos de las patas de las moscas. Una vez que todas estas materias hubieran sido desarrolladas con una gran dedicación, los biólogos se adentraron en la maquinaria interior de los cuerpos vivientes, primero desde un punto de vista muy general, naturalmente, porque se necesita algún esfuerzo para entrar en los detalles más finos.

Hubo una interesante relación inicial en la que la biología ayudó a la física en el descubrimiento de la conservación de la energía, que fue demostrada inicialmente por Mayer en relación con la cantidad de calor tomada y cedida por una criatura viviente. : 

Hubo una interesante relación inicial en la que la biología ayudó a la física en el descubrimiento de la conservación de la energía, que fue demostrada inicialmente por Mayer en relación con la cantidad de calor tomada y cedida por una criatura viviente.

Si consideramos más de cerca los procesos de la biología de los animales vivos vemos muchos fenómenos físicos: la circulación de la sangre, el bombeo, la presión, etc. Están los nervios: sabemos qué está sucediendo cuando pisamos una piedra puntiaguda, y que de un modo u otro la información viene de la pierna. Es interesante cómo sucede esto. En su estudio de los nervios, los biólogos han llegado a la conclusión de que los nervios son tubos muy finos con una pared compleja y muy delgada; las células bombean iones a través de esta pared, de modo que hay iones positivos en el exterior e iones negativos en el interior, como en un condensador. Esta membrana tiene una propiedad interesante; si se «descarga» en un lugar, es decir, si algunos de los iones son capaces de atravesarla en un lugar, de modo que la tensión eléctrica se reduce en ese punto, la influencia eléctrica se hace sentir en los iones próximos, y afecta a la membrana de tal forma que hace que los iones también la atraviesen en puntos vecinos. Esto, a su vez, afecta a las zonas situadas un poco más lejos, etc.; y así hay una onda de «penetrabilidad» de la membrana que recorre la fibra cuando es «excitada» en un extremo al pisar la piedra puntiaguda. Esta onda es análoga en cierto modo a una larga hilera de fichas de dominó verticales; si se empuja una ficha en un extremo, ésta empuja a la siguiente, etc. Por supuesto, esto transmitirá sólo un mensaje a menos que las fichas de dominó se pongan de pie de nuevo; y de forma análoga, en las células nerviosas existen procesos que bombean de nuevo los iones lentamente para dejar al nervio dispuesto para el próximo impulso. Así es como sabemos lo que estamos haciendo (o al menos dónde estamos). Por supuesto, los efectos eléctricos asociados con este impulso nervioso deben ser registrados con instrumentos eléctricos, y puesto que hay efectos eléctricos, la física de los efectos eléctricos ha tenido obviamente mucha influencia en la comprensión del fenómeno. : 

Si consideramos más de cerca los procesos de la biología de los animales vivos vemos muchos fenómenos físicos: la circulación de la sangre, el bombeo, la presión, etc. Están los nervios: sabemos qué está sucediendo cuando pisamos una piedra puntiaguda, y que de un modo u otro la información viene de la pierna. Es interesante cómo sucede esto. En su estudio de los nervios, los biólogos han llegado a la conclusión de que los nervios son tubos muy finos con una pared compleja y muy delgada; las células bombean iones a través de esta pared, de modo que hay iones positivos en el exterior e iones negativos en el interior, como en un condensador. Esta membrana tiene una propiedad interesante; si se «descarga» en un lugar, es decir, si algunos de los iones son capaces de atravesarla en un lugar, de modo que la tensión eléctrica se reduce en ese punto, la influencia eléctrica se hace sentir en los iones próximos, y afecta a la membrana de tal forma que hace que los iones también la atraviesen en puntos vecinos. Esto, a su vez, afecta a las zonas situadas un poco más lejos, etc.; y así hay una onda de «penetrabilidad» de la membrana que recorre la fibra cuando es «excitada» en un extremo al pisar la piedra puntiaguda. Esta onda es análoga en cierto modo a una larga hilera de fichas de dominó verticales; si se empuja una ficha en un extremo, ésta empuja a la siguiente, etc. Por supuesto, esto transmitirá sólo un mensaje a menos que las fichas de dominó se pongan de pie de nuevo; y de forma análoga, en las células nerviosas existen procesos que bombean de nuevo los iones lentamente para dejar al nervio dispuesto para el próximo impulso. Así es como sabemos lo que estamos haciendo (o al menos dónde estamos). Por supuesto, los efectos eléctricos asociados con este impulso nervioso deben ser registrados con instrumentos eléctricos, y puesto que hay efectos eléctricos, la física de los efectos eléctricos ha tenido obviamente mucha influencia en la comprensión del fenómeno.

El efecto opuesto consiste en que, desde alguna parte del cerebro, se envía un mensaje a lo largo de un nervio. ¿Qué sucede en el extremo del nervio? Allí el nervio se ramifica en cosas pequeñas y finas, conectadas a una estructura próxima a un músculo, denominada placa terminal. Por razones que no se entienden exactamente, cuando el impulso llega al extremo del nervio se desprenden pequeños paquetes de una sustancia química denominada acetilcolina (cinco o diez moléculas cada vez), y éstos afectan a la fibra muscular y hacen que se contraiga, ¡qué fácil! ¿Qué hace que un músculo se contraiga? Un músculo consiste en un número muy grande de fibras juntas, que contienen dos sustancias diferentes, miosina y actomiosina, pero el mecanismo por el que la reacción química inducida por la acetilcolina puede modificar las dimensiones de la molécula no se conoce aún. Así pues, los procesos fundamentales en el músculo que crean los movimientos mecánicos no son conocidos. : 

El efecto opuesto consiste en que, desde alguna parte del cerebro, se envía un mensaje a lo largo de un nervio. ¿Qué sucede en el extremo del nervio? Allí el nervio se ramifica en cosas pequeñas y finas, conectadas a una estructura próxima a un músculo, denominada placa terminal. Por razones que no se entienden exactamente, cuando el impulso llega al extremo del nervio se desprenden pequeños paquetes de una sustancia química denominada acetilcolina (cinco o diez moléculas cada vez), y éstos afectan a la fibra muscular y hacen que se contraiga, ¡qué fácil! ¿Qué hace que un músculo se contraiga? Un músculo consiste en un número muy grande de fibras juntas, que contienen dos sustancias diferentes, miosina y actomiosina, pero el mecanismo por el que la reacción química inducida por la acetilcolina puede modificar las dimensiones de la molécula no se conoce aún. Así pues, los procesos fundamentales en el músculo que crean los movimientos mecánicos no son conocidos.

La biología es un campo tan enormemente amplio que hay muchos otros problemas que ni siquiera podemos mencionar: problemas acerca del mecanismo de la visión (qué hace la luz en el ojo), el mecanismo del oído, etc. (La forma en que trabaja el pensamiento la discutiremos más adelante en la psicología.) Ahora bien, estas cosas concernientes a la biología que acabamos de discutir no son, desde un punto de vista biológico, realmente fundamentales, no están en la base de la vida, en el sentido de que incluso si las comprendiéramos seguiríamos sin comprender la propia vida. Para ilustrarlo: los hombres que estudian los nervios piensan que su trabajo es muy importante porque, después de todo, no puede haber animales sin nervios. Pero ustedes pueden tener vida sin nervios. Las plantas no tienen nervios ni músculos, pero están trabajando, están vivas, en cualquier caso. De modo que para ver los problemas fundamentales de la biología debemos mirar más profundamente; cuando lo hacemos descubrimos que todos los seres vivos tienen muchas características en común. La característica más común es que están hechos de células, dentro de cada una de las cuales hay una maquinaria compleja para hacer cosas por medios químicos. En las células de las plantas, por ejemplo, hay maquinaria para captar la luz y generar sacarosa, que es consumida en la oscuridad para mantener viva la planta. Cuando un animal la come, la propia sacarosa genera en éste una serie de reacciones químicas relacionadas muy estrechamente con la fotosíntesis (y su efecto opuesto en la oscuridad) en las plantas. : 

La biología es un campo tan enormemente amplio que hay muchos otros problemas que ni siquiera podemos mencionar: problemas acerca del mecanismo de la visión (qué hace la luz en el ojo), el mecanismo del oído, etc. (La forma en que trabaja el pensamiento la discutiremos más adelante en la psicología.) Ahora bien, estas cosas concernientes a la biología que acabamos de discutir no son, desde un punto de vista biológico, realmente fundamentales, no están en la base de la vida, en el sentido de que incluso si las comprendiéramos seguiríamos sin comprender la propia vida. Para ilustrarlo: los hombres que estudian los nervios piensan que su trabajo es muy importante porque, después de todo, no puede haber animales sin nervios. Pero ustedes pueden tener vida sin nervios. Las plantas no tienen nervios ni músculos, pero están trabajando, están vivas, en cualquier caso. De modo que para ver los problemas fundamentales de la biología debemos mirar más profundamente; cuando lo hacemos descubrimos que todos los seres vivos tienen muchas características en común. La característica más común es que están hechos de células, dentro de cada una de las cuales hay una maquinaria compleja para hacer cosas por medios químicos. En las células de las plantas, por ejemplo, hay maquinaria para captar la luz y generar sacarosa, que es consumida en la oscuridad para mantener viva la planta. Cuando un animal la come, la propia sacarosa genera en éste una serie de reacciones químicas relacionadas muy estrechamente con la fotosíntesis (y su efecto opuesto en la oscuridad) en las plantas.

En las células de los sistemas vivos se producen muchas reacciones químicas elaboradas, en las que un compuesto se transforma en otro y en otro más, y así sucesivamente. Para dar alguna idea de los enormes esfuerzos que están implicados en el estudio de la bioquímica, la gráfica de la figura 3.1 resume nuestro conocimiento hasta la fecha de sólo una pequeña parte de las muchas series de reacciones que tienen lugar en las células, quizá un 1 por 100 más o menos de ellas. : 

En las células de los sistemas vivos se producen muchas reacciones químicas elaboradas, en las que un compuesto se transforma en otro y en otro más, y así sucesivamente. Para dar alguna idea de los enormes esfuerzos que están implicados en el estudio de la bioquímica, la gráfica de la figura 3.1 resume nuestro conocimiento hasta la fecha de sólo una pequeña parte de las muchas series de reacciones que tienen lugar en las células, quizá un 1 por 100 más o menos de ellas.

Aquí vemos una serie completa de moléculas que se transforman unas en otras en una secuencia o ciclo de pasos bastante pequeños. Se denomina el ciclo de Krebs, el ciclo respiratorio. Cada una de las sustancias químicas y cada uno de los pasos es bastante simple, en términos de los cambios que se producen en la molécula, pero y este es un descubrimiento de capital importancia en la bioquímica estos cambios son relativamente difíciles de llevar a cabo en un laboratorio. Si tenemos una sustancia y una segunda sustancia muy similar, una no se transforma simplemente en la otra, porque las dos formas están normalmente separadas por una «colina» o barrera energética. Consideremos esta analogía: si quisiéramos llevar un objeto de un lugar a otro, situado al mismo nivel pero al otro lado de una colina, tendríamos que subirlo hasta la cima, pero hacer eso requiere añadir alguna energía. Así pues, la mayoría de las reacciones químicas no ocurren porque existe lo que se denomina una energía de activación en el camino. Para añadir un átomo extra a nuestra sustancia química es necesario acercarlo lo suficiente para que puedan producirse algunas recombinaciones; entonces se quedará adherido. Pero si no podemos darle bastante energía para acercarlo lo suficiente, no llegará a la culminación, sino que se quedará sin llegar a la cima de la «colina» y volverá a bajar. Sin embargo, si pudiéramos tomar literalmente las moléculas con nuestras manos y empujar y apartar los átomos para abrir un hueco hasta el nuevo átomo, y luego tapar el hueco de nuevo, habríamos encontrado otra vía, alrededor de la colina, que no requeriría energía extra y la reacción tendría lugar fácilmente. Ahora bien, existen realmente, en las células, moléculas muy grandes, mucho mayores que aquellas cuyos cambios hemos estado describiendo, que de un modo complicado mantienen a las moléculas más pequeñas en la forma precisa para que la reacción pueda ocurrir fácilmente. Estas cosas muy grandes y complicadas se denominan enzimas. (Inicialmente se denominaron fermentos, porque fueron originalmente descubiertos en la fermentación del azúcar. De hecho, algunas de las primeras reacciones del ciclo se descubrieron allí.) En presencia de una enzima la reacción continuará. : 

Aquí vemos una serie completa de moléculas que se transforman unas en otras en una secuencia o ciclo de pasos bastante pequeños. Se denomina el ciclo de Krebs, el ciclo respiratorio. Cada una de las sustancias químicas y cada uno de los pasos es bastante simple, en términos de los cambios que se producen en la molécula, pero y este es un descubrimiento de capital importancia en la bioquímica estos cambios son relativamente difíciles de llevar a cabo en un laboratorio. Si tenemos una sustancia y una segunda sustancia muy similar, una no se transforma simplemente en la otra, porque las dos formas están normalmente separadas por una «colina» o barrera energética. Consideremos esta analogía: si quisiéramos llevar un objeto de un lugar a otro, situado al mismo nivel pero al otro lado de una colina, tendríamos que subirlo hasta la cima, pero hacer eso requiere añadir alguna energía. Así pues, la mayoría de las reacciones químicas no ocurren porque existe lo que se denomina una energía de activación en el camino. Para añadir un átomo extra a nuestra sustancia química es necesario acercarlo lo suficiente para que puedan producirse algunas recombinaciones; entonces se quedará adherido. Pero si no podemos darle bastante energía para acercarlo lo suficiente, no llegará a la culminación, sino que se quedará sin llegar a la cima de la «colina» y volverá a bajar. Sin embargo, si pudiéramos tomar literalmente las moléculas con nuestras manos y empujar y apartar los átomos para abrir un hueco hasta el nuevo átomo, y luego tapar el hueco de nuevo, habríamos encontrado otra vía, alrededor de la colina, que no requeriría energía extra y la reacción tendría lugar fácilmente. Ahora bien, existen realmente, en las células, moléculas muy grandes, mucho mayores que aquellas cuyos cambios hemos estado describiendo, que de un modo complicado mantienen a las moléculas más pequeñas en la forma precisa para que la reacción pueda ocurrir fácilmente. Estas cosas muy grandes y complicadas se denominan enzimas. (Inicialmente se denominaron fermentos, porque fueron originalmente descubiertos en la fermentación del azúcar. De hecho, algunas de las primeras reacciones del ciclo se descubrieron allí.) En presencia de una enzima la reacción continuará.

3.1 El ciclo de Krebs. : 

3.1 El ciclo de Krebs.

authorStream Live Help