Composite Materials

Category: Entertainment

Presentation Description



Presentation Transcript

Composite Materials:

Composite Materials R. Lindeke ENGR 2110


Introduction A Composite material is a material system composed of two or more macro constituents that differ in shape and chemical composition and which are insoluble in each other. The history of composite materials dates back to early 20th century. In 1940, fiber glass was first used to reinforce epoxy. Applications: Aerospace industry Sporting Goods Industry Automotive Industry Home Appliance Industry

Advanced Aerospace Application::

Advanced Aerospace Application: Lear Fan 2100 “all-composite” aircraft

Advanced Aerospace Application::

Advanced Aerospace Application: Boeing 767 (and in 777, 787 airplanes w/ the latest, full wing box is composite):


• Composites : -- Multiphase material w/significant proportions of each phase. • Dispersed phase : -- Purpose: enhance matrix properties. MMC : increase s y , TS , creep resist. CMC : increase K c PMC : increase E , s y , TS , creep resist. -- Classification: Particle , fiber , structural • Matrix : -- The continuous phase -- Purpose is to: - transfer stress to other phases - protect phases from environment -- Classification: MMC, CMC, PMC metal ceramic polymer Reprinted with permission from D. Hull and T.W. Clyne, An Introduction to Composite Materials , 2nd ed., Cambridge University Press, New York, 1996, Fig. 3.6, p. 47. Terminology/Classification woven fibers cross section view 0.5 mm 0.5 mm

Composite Structural Organization: the design variations:

Composite Structural Organization: the design variations

Composite Survey:

Composite Survey Adapted from Fig. 16.2, Callister 7e .

Composite Benefits:

• CMCs: Increased toughness Composite Benefits fiber-reinf un-reinf particle-reinf Force Bend displacement • PMCs: Increased E / r E (GPa) G =3 E /8 K = E Density, r [mg/m 3 ] .1 .3 1 3 10 30 .01 .1 1 10 10 2 10 3 metal/ metal alloys polymers PMCs ceramics Adapted from T.G. Nieh, "Creep rupture of a silicon-carbide reinforced aluminum composite", Metall. Trans. A Vol. 15(1), pp. 139-146, 1984. Used with permission. • MMCs: Increased creep resistance 20 30 50 100 200 10 -10 10 -8 10 -6 10 -4 6061 Al 6061 Al w/SiC whiskers s (MPa) e ss (s -1 )

Composite Survey: Particle-I:

Composite Survey: Particle-I • Examples: Adapted from Fig. 10.19, Callister 7e . (Fig. 10.19 is copyright United States Steel Corporation, 1971.) - Spheroidite steel matrix: ferrite ( a ) (ductile) particles: cementite ( Fe 3 C ) (brittle) 60 m m Adapted from Fig. 16.4, Callister 7e . (Fig. 16.4 is courtesy Carboloy Systems, Department, General Electric Company.) - WC/Co cemented carbide matrix: cobalt (ductile) particles: WC (brittle, hard) V m : 5-12 vol%! 600 m m Adapted from Fig. 16.5, Callister 7e . (Fig. 16.5 is courtesy Goodyear Tire and Rubber Company.) - Automobile tires matrix: rubber (compliant) particles: C (stiffer) 0.75 m m Particle-reinforced Fiber-reinforced Structural

Composite Survey: Particle-II:

Composite Survey: Particle-II Concrete – gravel + sand + cement - Why sand and gravel? Sand packs into gravel voids Reinforced concrete - Reinforce with steel rebar or remesh - increases strength - even if cement matrix is cracked Prestressed concrete - remesh under tension during setting of concrete. Tension release puts concrete under compressive force - Concrete much stronger under compression. - Applied tension must exceed compressive force Particle-reinforced Fiber-reinforced Structural threaded rod nut Post tensioning – tighten nuts to put under rod under tension but concrete under compression

Composite Survey: Particle-III:

• Elastic modulus , E c , of composites: -- two approaches. • Application to other properties: -- Electrical conductivity , s e : Replace E in the above equations with s e . -- Thermal conductivity , k : Replace E in above equations with k . Adapted from Fig. 16.3, Callister 7e . (Fig. 16.3 is from R.H. Krock, ASTM Proc , Vol. 63, 1963.) Composite Survey: Particle-III lower limit: 1 E c = V m E m + V p E p c m m upper limit: E = V E + V p E p “rule of mixtures” Particle-reinforced Fiber-reinforced Structural Data: Cu matrix w/tungsten particles 0 20 4 0 6 0 8 0 10 0 150 20 0 250 30 0 350 vol% tungsten E (GPa) (Cu) ( W)

Composite Survey: Fiber:

Composite Survey: Fiber Fibers themselves are very strong Provide significant strength improvement to material Ex: fiber-glass Continuous glass filaments in a polymer matrix Strength due to fibers Polymer simply holds them in place and environmentally protects them Particle-reinforced Fiber-reinforced Structural

Fiber Loading Effect under Stress::

Fiber Loading Effect under Stress:

Composite Survey: Fiber:

• Critical fiber length (l C ) for effective stiffening & strengthening: • Ex: For fiberglass, a fiber length > 15 mm is needed since this length provides a “Continuous fiber” based on usual glass fiber properties Composite Survey: Fiber Particle-reinforced Fiber-reinforced Structural fiber diameter shear strength of fiber-matrix interface fiber strength in tension • Why? Longer fibers carry stress more efficiently! Shorter, thicker fiber: Longer, thinner fiber: Poorer fiber efficiency Adapted from Fig. 16.7, Callister 7e . Better fiber efficiency s (x) s (x)

Fiber Load Behavior under Stress::

Fiber Load Behavior under Stress:

Composite Survey: Fiber:

Composite Survey: Fiber Fiber Materials Whiskers - Thin single crystals - large length to diameter ratio graphite, SiN, SiC high crystal perfection – extremely strong, strongest known very expensive Particle-reinforced Fiber-reinforced Structural Fibers polycrystalline or amorphous generally polymers or ceramics Ex: Al 2 O 3 , Aramid, E-glass, Boron, UHMWPE Wires Metal – steel, Mo, W

Fiber Alignment:

Fiber Alignment aligned continuous aligned random discontinuous Adapted from Fig. 16.8, Callister 7e .

Behavior under load for Fibers & Matrix:

Behavior under load for Fibers & Matrix

Composite Strength: Longitudinal Loading:

Composite Strength: Longitudinal Loading Continuous fibers - Estimate fiber-reinforced composite strength for long continuous fibers in a matrix Longitudinal deformation  c =  m V m +  f V f but  c =  m =  f volume fraction isostrain E ce = E m V m + E f V f longitudinal (extensional) modulus f = fiber m = matrix Remembering: E = / and note, this model corresponds to the “upper bound” for particulate composites

Composite Strength: Transverse Loading:

Composite Strength: Transverse Loading In transverse loading the fibers carry less of the load and are in a state of ‘isostress’  c =  m =  f =   c =  m V m +  f V f transverse modulus  Remembering: E = / and note, this model corresponds to the “lower bound” for particulate composites

An Example::

An Example: Note: (for ease of conversion) 6870 N/m 2 per psi! UTS, SI Modulus, SI 57.9 MPa 3.8 GPa 2.4 GPa 399.9 GPa (241.5 GPa) (9.34 GPa)

Composite Strength:

• Estimate of E c and TS for discontinuous fibers: -- valid when -- Elastic modulus in fiber direction: -- TS in fiber direction: efficiency factor : -- aligned 1D: K = 1 (aligned ) -- aligned 1D: K = 0 (aligned ) -- random 2D: K = 3/8 (2D isotropy) -- random 3D: K = 1/5 (3D isotropy) (aligned 1D) Values from Table 16.3, Callister 7e . (Source for Table 16.3 is H. Krenchel, Fibre Reinforcement , Copenhagen: Akademisk Forlag, 1964.) Composite Strength Particle-reinforced Fiber-reinforced Structural ( TS ) c = ( TS ) m V m + ( TS ) f V f E c = E m V m + K E f V f

Composite Survey: Fiber:

• Aligned Continuous fibers • Examples: From W. Funk and E. Blank, “Creep deformation of Ni3Al-Mo in-situ composites", Metall. Trans. A Vol. 19(4), pp. 987-998, 1988. Used with permission. -- Metal : g '(Ni 3 Al)- a (Mo) by eutectic solidification. Composite Survey: Fiber Particle-reinforced Fiber-reinforced Structural matrix: a (Mo) (ductile) fibers: g ’ (Ni 3 Al) (brittle) 2 m m -- Ceramic : Glass w/SiC fibers formed by glass slurry E glass = 76 GPa; E SiC = 400 GPa. (a) (b) fracture surface From F.L. Matthews and R.L. Rawlings, Composite Materials; Engineering and Science , Reprint ed., CRC Press, Boca Raton, FL, 2000. (a) Fig. 4.22, p. 145 (photo by J. Davies); (b) Fig. 11.20, p. 349 (micrograph by H.S. Kim, P.S. Rodgers, and R.D. Rawlings). Used with permission of CRC Press, Boca Raton, FL.

Composite Survey: Fiber:

• Discontinuous, random 2D fibers • Example: Carbon-Carbon -- process: fiber/pitch, then burn out at up to 2500 º C. -- uses: disk brakes, gas turbine exhaust flaps, nose cones. • Other variations: -- Discontinuous, random 3D -- Discontinuous, 1D Composite Survey: Fiber Particle-reinforced Fiber-reinforced Structural (b) fibers lie in plane view onto plane C fibers: very stiff very strong C matrix: less stiff less strong (a) efficiency factor : -- random 2D: K = 3/8 (2D isotropy) -- random 3D: K = 1/5 (3D isotropy) E c = E m V m + K E f V f

Looking at strength::

Looking at strength:

Composite Survey: Structural:

• Stacked and bonded fiber-reinforced sheets -- stacking sequence: e.g., 0 º /90 º or 0  /45  /90 º -- benefit: balanced, in-plane stiffness Adapted from Fig. 16.16, Callister 7e . Composite Survey: Structural Particle-reinforced Fiber-reinforced Structural • Sandwich panels -- low density, honeycomb core -- benefit: light weight, large bending stiffness honeycomb adhesive layer face sheet Adapted from Fig. 16.18, Callister 7e . (Fig. 16.18 is from Engineered Materials Handbook , Vol. 1, Composites , ASM International, Materials Park, OH, 1987.)

Composite Manufacturing Processes:

Composite Manufacturing Processes Particulate Methods: Sintering Fiber reinforced: Several Structural: Usually Hand lay-up and atmospheric curing or vacuum curing

PowerPoint Presentation:

Open Mold Processes Only one mold (male or female) is needed and may be made of any material such as wood, reinforced plastic or , for longer runs, sheet metal or electroformed nickel. The final part is usually very smooth. Shaping . Steps that may be taken for high quality 1. Mold release agent (silicone, polyvinyl alcohol, fluorocarbon, or sometimes, plastic film) is first applied. 2. Unreinforced surface layer (gel coat) may be deposited for best surface quality.

PowerPoint Presentation:

Hand Lay-Up: The resin and fiber (or pieces cut from prepreg) are placed manually, air is expelled with squeegees and if necessary, multiple layers are built up. Hardening is at room temperature but may be improved by heating. Void volume is typically 1%. Foam cores may be incorporated (and left in the part) for greater shape complexity. Thus essentially all shapes can be produced. Process is slow (deposition rate around 1 kg/h) and labor-intensive Quality is highly dependent on operator skill. Extensively used for products such as airframe components, boats, truck bodies, tanks, swimming pools, and ducts.


A spray gun supplying resin in two converging streams into which roving is chopped Automation with robots results in highly reproducible production Labor costs are lower SPRAY-UP MOLDING

Tape-Laying Machines (Automated Lay-Up):

Cut and lay the ply or prepreg under computer control and without tension; may allow reentrant shapes to be made. Cost is about half of hand lay-up Extensively used for products such as airframe components, boats, truck bodies, tanks, swimming pools, and ducts. Tape-Laying Machines (Automated Lay-Up)

PowerPoint Presentation:

Filament Winding Ex: pressure tanks Continuous filaments wound onto mandrel Adapted from Fig. 16.15, Callister 7e . [Fig. 16.15 is from N. L. Hancox, (Editor), Fibre Composite Hybrid Materials, The Macmillan Company, New York, 1981.]

PowerPoint Presentation:

Filament Winding Characteristics Because of the tension, reentrant shapes cannot be produced. CNC winding machines with several degrees of freedom (sometimes 7) are frequently employed. The filament (or tape, tow, or band) is either precoated with the polymer or is drawn through a polymer bath so that it picks up polymer on its way to the winder. Void volume can be higher (3%) The cost is about half that of tape laying Productivity is high (50 kg/h). Applications include: fabrication of composite pipes, tanks, and pressure vessels. Carbon fiber reinforced rocket motor cases used for Space Shuttle and other rockets are made this way.

PowerPoint Presentation:

Pultrusion Fibers are impregnate with a prepolymer, exactly positioned with guides, preheated, and pulled through a heated, tapering die where curing takes place. Emerging product is cooled and pulled by oscillating clamps Small diameter products are wound up Two dimensional shapes including solid rods, profiles, or hollow tubes, similar to those produced by extrusion, are made, hence its name ‘pultrusion’

Composite Production Methods:

Composite Production Methods Pultrusion Continuous fibers pulled through resin tank, then preforming die & oven to cure Adapted from Fig. 16.13, Callister 7e . Production rates around 1 m/min. Applications are to sporting goods (golf club shafts), vehicle drive shafts (because of the high damping capacity), nonconductive ladder rails for electrical service, and structural members for vehicle and aerospace applications.

PowerPoint Presentation:

PREPREG PRODUCTION PROCESSES Prepreg is the composite industry’s term for continuous fiber reinforcement pre-impregnated with a polymer resin that is only partially cured. Prepreg is delivered in tape form to the manufacturer who then molds and fully cures the product without having to add any resin. This is the composite form most widely used for structural applications

PrePreg Process:

Manufacturing begins by collimating a series of spool-wound continuous fiber tows. Tows are then sandwiched and pressed between sheets of release and carrier paper using heated rollers (calendering). The release paper sheet has been coated with a thin film of heated resin solution to provide for its thorough impregnation of the fibers. PrePreg Process

PrePreg Process:

The final prepreg product is a thin tape consisting of continuous and aligned fibers embedded in a partially cured resin Prepared for packaging by winding onto a cardboard core. Typical tape thicknesses range between 0.08 and 0.25 mm Tape widths range between 25 and 1525 mm. Resin content lies between about 35 and 45 vol% PrePreg Process

PrePreg Process:

The prepreg is stored at 0  C (32  F) or lower because thermoset matrix undergoes curing reactions at room temperature. Also the time in use at room temperature must be minimized. Life time is about 6 months if properly handled. Both thermoplastic and thermosetting resins are utilized: carbon, glass, and aramid fibers are the common reinforcements. Actual fabrication begins with the lay-up. Normally a number of plies are laid up to provide the desired thickness. The lay-up can be by hand or automated. PrePreg Process


• Composites are classified according to: -- the matrix material ( CMC , MMC , PMC ) -- the reinforcement geometry (particles, fibers, layers). • Composites enhance matrix properties: -- MMC: enhance s y , TS , creep performance -- CMC: enhance K c -- PMC: enhance E , s y , TS , creep performance • Particulate-reinforced : -- Elastic modulus can be estimated. -- Properties are isotropic. • Fiber-reinforced : -- Elastic modulus and TS can be estimated along fiber dir. -- Properties can be isotropic or anisotropic. • Structural : -- Based on build-up of sandwiches in layered form. Summary

authorStream Live Help