use of male sterility and self incompatibility for hybrid seed product

Views:
 
     
 

Presentation Description

USE OF MALE STERILITY AND SELF INCOMPATIBILITY FOR HYBRID SEED PRODUCTION IN VEGETABLE CROPS

Comments

By: nanceesingh (34 month(s) ago)

hello sir,i need this presentation 4 my credit seminar.if possible plz sent it to nancee.singh@gmail.com

Presentation Transcript

Slide 1: 

1 Presented By:- Mr. Arun D. Ugale M. Sc. (Agri .) Genetics And Plant Breeding USE OF MALE STERILITY AND SELF INCOMPATIBILITY FOR HYBRID SEED PRODUCTION IN VEGETABLE CROPS

Slide 2: 

2 Introduction Male Sterility Tomato Chilli Onion Self Incompatibility Cauliflower Radish Conclusion Future thrust CONTENTS 2 Introduction Male Sterility Tomato Chilli Onion Self Incompatibility Cauliflower Radish Conclusion CONTENTS

Slide 3: 

Introduction 3

Slide 4: 

India is the second largest producer of vegetable crops in the world next to China. India produced 125 millions tons of vegetables from an area of 7.80 million hectares during 2008. India shares about 14% of the world’s output of vegetables from about 2% of cropped area in the country. The diverse climatic condition’s enable to produce different indigenous and exotic vegetables in India. (Anon., 2009) 4

Slide 5: 

Scope and Importance of Vegetables Vegetables are considered as " Protective Supplementary Food " Different uses of vegetables - - Cooking, salad, pickle, fried, stuffed - High medicinal value - Use as ornaments - Different industrial uses Vegetable make effective use of land and labour resources They play an important role in national economy Increase vegetable production through use of hybrid seeds 5

Slide 6: 

Table 1: State wise area, production and productivity of vegetables in India during 2007-08 . State Area (000 ha) Production (000 mt ) Productivity (t/ha) 2007 2008 2007 2008 2007 2008 West Bengal 1313.1 4680.0 17140.0 22456.8 13.1 17.1 Uttar Pradesh 897.7 960.8 18190.5 19790.3 20.3 20.6 Bihar 824.4 823.7 13612.8 14067.7 16.5 17.1 Orissa 660.1 660.7 8180.4 8214.6 12.4 12.4 Gujarat 366.1 411.7 6062.6 7402.9 16.6 18.0 Total (India) 7584 7803 115011 125887 15.2 16.1 Source : Indian Horticultural Database (2009) 6

Slide 7: 

Table 2: Area, production and productivity of major vegetable crops in Gujarat (2007-08). Crop Area (00 ha) Production (00 mt ) Productivity (t/ ha) Tomato 292.8 6500.1 22.19 Brinjal 626.6 9826.2 15.68 Cabbage 190.5 3292.4 17.28 Cauliflower 161.4 2777.9 17.21 Okra 410 3503.4 8.54 Onion 849.1 18766 22.10 Cluster Bean 259.3 1856.9 7.16 Potato 409.9 10885.3 26.55 Others 602.3 5674.3 9.42 Total 3801.8 63082.4 17.00 Source:- Directorate of Horticulture, Gujarat State , Gandhinagar. STATISTICAL ABSTRACT OF GUJARAT STATE - 2008 7

Slide 8: 

Why hybrids are adopted by farmers? Greater productivity Longer harvest duration Better adaptability to variable environments Better tolerance to diseases and pests Uniform produce Better market acceptability Better nutritional quality 8

Slide 9: 

SEED MARKET The global commercial seed market is worth $ 37 bn. India is fifth largest and fastest growing seed market in the world. Vegetables seed market in India is about Rs 6 bn. Seed cost as a percentage of revenue per acre for a farmer in India is less than 5% as against 15% in other countries. 9 Onion seed Chilli seed Tomato seed

Slide 10: 

Table 3: Estimated share of vegetable hybrids in total cropped area in India (2008-09). Crops Total area (ha) Area under F 1 hybrids (ha) Share of hybrid’s area (%) Egg plant 4,79,095 85,300 17.80 Cabbage 2,42,140 76,000 31.39 Cauliflower 3,04,156 10,000 3.29 Chilli 5,73,529 14,000 2.24 Gourds 4,09,270 10,000 2.44 Melons 1,69,350 6,800 4.02 Okra 3,71,665 20,000 5.38 Tomato 4,85,520 1,53,000 31.51 Total 30,34,725 3,75,100 12.36 Source : Indian Horticultural Database (2009) 10

Slide 11: 

WHY MALE STERILITY AND SELF INCOMAPATABILITY? Production of large scale of F 1 seeds. Reduced cost of hybrid seed production. Speedup the hybridization programme. Commercial exploitation of hybrid vigour. 11

Slide 12: 

Table 4: The most commonly utilized mechanisms for developing commercial hybrids in vegetables. Mechanism Commercially exploited in: Hand emasculation + HP Tomato, eggplant, sweet pepper, okra, hot pepper Remove staminate flowers + HP Cucurbits (bitter gourd, bottle gourd, etc. ) Male sterility + HP Tomato, hot pepper, sweet pepper Male sterility + NP Onion, cabbage, cauliflower, carrot, radish, muskmelon, hot pepper. Self incompability + NP Most of cole vegetables like broccolis, cabbage etc. Gynoecism + NP Cucumber, muskmelon. Remove staminate flowers + NP Cucurbits including bitter gourd, summer squash, winter squash, etc. HP = Hand pollination NP = Natural pollination 12

Slide 13: 

MALE STERILITY 13

Slide 14: 

A) Genetic male sterility( GMS) : - wide occurrence in plants - mostly governed by a single recessive gene , ms - male sterile alleles arise spontaneously or may be artificially induced B) Cytoplasmic male sterility (CMS) : - determined by the cytoplasm - it is the result of mutation in the mitochondrial genome (mtDNA) - CMS transfer easily to a given strain C) Cytoplasmic-genetic male sterility (CGMS) : - nuclear gene restores the fertility in the male sterile line - also know as nucleoplasmic male sterility - fertility restorer gene R is required D) Chemically induced male sterility : - IAA, IBA, Ethrel , etc. Kaul (1988) 14 Types of male sterility

Slide 15: 

15 Natural population Artificially induced through mutagenesis Genetic engineering Protoplast fusion SOURCES FOR MALE STERILITY

Slide 16: 

Table 5: Mechanisms for the development of hybrids in vegetables Mechanism Vegetables Remark Reference Nuclear male Sterility Tomato Monogenic recessive mutant was utilized to develop cost effective experimental crosses. Sawhney ., 1997 Watermelon The utilization of monogenic recessive mutant was proposed. Zhang et al., 1994 Bottle gourd, Okra Male sterile plants were identified and utilized to develop experimental crosses. Dutta ., 1983 Cytoplasmic male sterility Radish The combined use of both MS and SI mechanisms to enhance efficiency of hybrid seed production has been proposed. Cho et al., 1985 Functional male sterility Eggplant , Tomato A monogenic recessive mutant was identified and proposed for commercial utilization. Phatak & Jaworski ., 1989 Transgenic male sterility Tomato, Cauliflower, etc. Many vegetables are at the edge of commercial utilization. Williams et al., 1997 16

Slide 17: 

Tomato 17

Slide 18: 

18 Mutant Description Inheritance Governing by single recessive gene Stamenless Stamens absent Monogenic recessive sl Positional sterility Stigma exerted Monogenic recessive ps Pollen sterility Pollen abortive Monogenic recessive ms series Functional sterility Anthers do not dehisce Monogenic recessive ps-2 Table 6: Different male sterile mutants in tomato.

Slide 19: 

Conventional emasculation and pollination with help of forcep Pollination in ps- 2 line without use of forcep 19 Fig. 1: Artificial emasculation and artificial pollination in conventional methods with the help of forcep and pollination in ps- 2 sterile seed parents in tomato.

Slide 20: 

Hybrids One day after flower opening Two days after flower opening Three days after flower opening Four days after flower opening Number of seeds obtained Hybridity (%) Number of seeds obtained Hybridity (%) Number of seeds obtained Hybridity (%) Number of seeds obtained Hybridity (%) St 993 x L 19 2934 100 3142 100 3016 100 2431 100 B 317 x L 19 2712 100 2834 100 2702 100 2321 99.5 JP x L 19 2245 100 2295 100 2187 99.3 1099 96.5 Star t 24 x L 19 2617 100 2694 100 2528 100 2303 99.6 Vrb . nizke x L 19 2328 100 2217 98.9 2355 97.1 1806 91.4 Table 7: Per cent hybridity in F 1 seeds obtained by artificial pollination in functional sterile ( ps - 2) seed parents in tomato. Atanassova (1999) Bulgaria Sterile line – Five ( ps – 2) Male fertile- L 19 20

Slide 21: 

Ludhiana Dhaliwal and Cheema (2008) Table 8: Time required for crossing 50 flower buds on male fertile ( Ms33 IPA) and genetic male sterile ( ms33 IPA) plants in tomato. Worker Time (minutes) Time saved in GMS over MF ( %) Emasculation Pollination on MF Emasculation + pollination on MF Pollination on GMS 1 22.0 44.0 66.0 37.7 42.9 2 26.1 34.9 60.5 26.3 56.5 3 38.7 45.1 83.8 33.3 60.3 4 37.3 43.8 75.5 34.2 54.7 5 32.8 41.1 73.9 32.7 55.8 Mean 30.7 41.7 71.9 32.8 54.4 CD at P=0.05 1.52 1.60 1.95 1.10 - 21

Slide 22: 

Table 9: Fruit characteristics of different crosses in tomato. Crosses Types of sterility Polar diameter (cm) Equatorial diameter (cm) Number of locule Pericarp thickness (mm) Total Soluble salt (%) Fruit weight (g) ms33 IPA x Ms33 IPA Pollen abortive 5.13 4.56 2.33 6.33 4.60 59.00 ms2 IPA x Ms33 IPA Pollen abortive 5.09 4.43 2.00 6.33 4.75 62.33 ps2 L 3841 x Ms33 IPA Functional 4.26 4.73 4.66 6.00 4.16 61.33 ps2 NS 101 x Ms33 IPA Functional 4.40 4.36 3.00 6.00 4.60 59.33 ps2 San Pedro x Ms33 IPA Functional 5.53 6.23 3.83 6.66 4.63 112.66 ps2 UC 82-B x Ms33 IPA Functional 5.15 4.70 2.10 6.30 4.80 67.00 C.D. at P=0.05 - 0.34 0.29 2.82 0.82 0.25 7.19 22 Ludhiana Dhaliwal and Cheema (2008) Male sterile lines: Six x Male fertile ( Ms33 IPA )

Slide 23: 

Hybrids Days to maturity Harvesting span Fruit weight (g) Total yield (Kg/plant ) Marketable yield (Kg/plant ) ms2 cv. Pearson X WIR 4329 - 0.97 12.14** 98.39** 23.90** 2.90 x P4-5-2 - 0.64 4.59 22.45** 16.22** 8.82 ms 15 47 cv. UC82B x 8-2-1-2-5 -4.40 ** 2.56 -58.30** 64.70** 85.40** x WIR 4285 0.99 -2.68 -12.24** -5.17 -1.91 ms16 cv. Pritchard X IPA 3 3.89 ** 9.19** -9.09* 5.31 6.67 ms17 cv. Ace x WIR 4285 0.66 05.36 * 75.47** 16.28** -5.62 Table 10: Heterosis values of some selected hybrids in tomato. Singh and Singh (2003) Ludhiana Design : L x T Lines: Four GMS lines Testers: 10 23 *, ** significant at 5 and 1 per cent level , respectively

Slide 24: 

Parents Pericarp thickness Locule number Polar diameter Equatorial diameter Lines ms 10 36 -0.02* -0.16 - 0.03* 0.05 ms 45 -0.03* 0.16* -0.05* -0.10* ms 15 47 0.05* -0.10 0.03 0.50* Testers C 122 -0.03* 0.12 -0.14* 0.03 I 181 0.01* -0.30* 0.71* 0.15 I 182 0.01* -0.30* 0.71* 0.15 P 260 -0.01 -0.44* -0.19* -0.50* S 282 0.03* 0.56* 0.02 0.57* S 286 0.01* -0.61* 0.04* -0.11* X 331 0.05* -0.46* 0.27* 0.07 CD at P =0.05 (lines) 0.005 0.06 0.06 0.08 CD at P =0.05 (Testers) 0.01 0.14 0.15 0.19 Table 11: Estimation of general combining ability effects of parents for various characters in tomato *significant at 5 per cent level Kaur et al. (2002) Ludhiana Design : L x T Lines: Three GMS lines Testers: 12 24

Slide 25: 

Hybrids Pericarp thickness Locule number Polar diameter Equatorial diameter ms 10 36 x A 100 0.05* -0.21* 0.23* 0.31* ms 10 36 x C 122 -0.02* -0.83* 0.78* 0.14 ms 10 36 x P 260 0.04* -0.34* 0.02 -0.10 ms 10 36 x I181 -0.01 -0.63* 0.23* 0.24 ms 10 36 x U 301 -0.13* 0.72* 0.00 0.61* ms 45 x C 121 -0.04* - 0.04* 0.43* 0.20 ms 45 x I 183 -0.02* 0.32* 0.46* 0.45* ms 45 x S 286 0.09* 0.26* 0.25* 0.02 ms 45 x S 282 -0.05* -0.52* -0.65* 0.79* ms 15 47 x S 286 -0.08* 0.23* 0.35* 0.68* ms 15 47 x I 183 0.03* -0.32* -0.54* -0.51* CD at P=0.05 0.02 0.19 0.22 0.27 Table 12: Estimates of specific combining ability effects of hybrids for various characters in tomato *significant at 5 per cent level Ludhiana Design : L x T Lines: Three GMS lines Testers: 12 25 Kaur et al. (2002)

Slide 26: 

Table 13: Estimates of general combining ability effects of parents in tomato Design : L x T Lines: four GMS lines Testers: 10 Parents Days to maturity Harvesting span Fruit firmness (kg/cm2) Fruit weight (g) Total yield (kg/plant ) Marketable yield (Kg/plant ) Lines ms2 cv. Pearson -0.62** -0.28 0.14 22.70** -0.10 -0.69** ms 15 47 cv. UC82B -0.52** 0.08** 0.11 26.10** 0.51** 0.46** ms16 cv. Pritchard -0.42** 0.18* -0.33** -14.40** -0.66** -0.10** ms17 cv1-Ace 0.72** 0.02* 0.08 17.79** 0.25** 0.33** Tester 8-2-1-2-5 0.32 0.45 0.34* -11.63** 1.40** 0.78** IPA 3 1.57** -0.22 0.06 -1.41 -0.92** -0.57** UC82B 0.23 0.78* 0.14 -4.78** -0.62 -0.1 San Pedro -0.27 -0.22 -0.03 19.94** -0.65** -0.99** CD at 5% (lines) 0.31 0.38 0.19 1.05 0.17 0.15 CD at 1% (lines) 0.41 0.51 0.25 1.41 0.22 0.20 CD at 5% (tester) 0.53 0.66 0.33 1.83 0.29 0.27 CD at 1% (tester) 0.72 0.89 0.44 2.44 0.39 0.36 *, ** significant at 5 and 1 per cent level, respectively Ludhiana Singh and Singh (2005) 26

Slide 27: 

Hybrids Days to maturity Harvesting span Fruit firmness (kg/cm2) Fruit weight (g) Total yield (kg/plant ) Marketable yield (kg/plant ) ms2 cv. Pearson X IPA 3 -2.47** -0.38 -0.06 -14.31** -0.54* -0.73** X L 3841 1.12* -0.13 -0.47 -2.61 -0.93** -0.04 X Sel 22 0.62 1.82* 0.61* -13.11** 0.69** 0.84** ms 15 47 cv. UC82B X 8-2-1-2-5 -1.65** 1.58** -0.27 42.72** 1.89** 2.52** ms16 cv. Pritchard X IPA 3 1.50** 1.28** 0.07 -1.97 0.03 0.15 ms17 cv1- Ace X San Pedro 1.97** -0.68 0.09 37.09** -1.49** -1.11** X UC82B 1.87* 1.32* 0.26 -4.54* -1.08** -0.94** X WIR 4285 -0.63 1.07 0.34 20.63** -2.53** -1.92** CD at 5% 0.93 1.15 0.57 3.17 0.51 0.47 CD at 1% 1.24 1.54 0.77 4.23 0.68 0.63 Design : L x T Lines: Four GMS lines Testers: 10 Table 14: Estimates of specific combining ability effect of selected crosses in tomato Ludhiana Singh and Singh (2005) 27 *, ** significant at 5 and 1 per cent level, respectively

Slide 28: 

CHILLI 28

Slide 29: 

29 Peterson first observed cytoplasmic genic male sterility in Capsicum annuum L . Hand emasculation is less economical for hybrid seed production in chilli. Male sterility system – 1. Genetic Male Sterility - - recessive gene msms - homozygous ( msms ) or heterozygous state ( Msms ) 2. Cytoplasmic Genic Male Sterility - - Single Nuclear Gene, rf1 - S cytoplasm produce sterility - 100 % male sterile plant

Slide 30: 

ms ms ms ms ms ms Three Possible genotype Fig. 2 : Genetic male sterility for hybrid seed production in chilli THREE POSSIBLE GENOTYPE 30

Slide 31: 

GMS line Mean percent fruit set on GMS line Natural out crossing Hand pollination ACMS 2 -1-1-1 32.64 13.82 ACMS 2 -1-1-4 30.22 14.08 ACMS 2 -5-1-1 35.99 14.82 ACMS 2 -5-1-5 34.39 14.00 ACMS 2 -6-1-1 30.68 15.34 ACMS 2 -6-1-3 32.82 14.60 S. Em - 0.35 Average of mean percent fruit set on GMS lines 32.79 14.44 Table 15: Per cent fruit set on male sterile (GMS lines) plants in chilli. Anand Patel et al. (2001) 31

Slide 32: 

CMS line Treatment Total fruit weight/plant (g) Weight of F 1 seeds/plant ( g) 1000 Seed weight (g) CCA7234 Bee (3 sterile: 1 restorer) 2012 0.9 8.2 CCA7234 Bee (2 sterile: 1 restorer) 2106 2.5 8.8 CCA7234 Hand-pollinated 1314 12.9 7.4 CCA7235 Bee (3 sterile: 1 restorer) 694 1.2 8.8 CCA7235 Bee (2 sterile: 1 restorer) 836 1.5 9.3 CCA7235 Hand-pollinated 1164 9.7 7.8 Mean Bee (3 sterile: 1 restorer) 1353 1.0 8.5 Mean Bee (2 sterile: 1 restorer) 1471 2.0 9.0 Mean Hand-pollinated 1239 11.3 7.6 Gniffke et al. ( 2009) AVRDC Taiwan CMS sterile line:- CCA7234, CCA7235 Restorer:-9852-161 32 Table 16: Total fruit weight and hybrid seed per plant obtained by different pollination methods in chilli .

Slide 33: 

Capsaicin (%) Oleoresin (%) Fruit length (cm) Fruit width (cm) Fruits/plant 10 fruit weight (g) Line CCA-4261 0.39 11.6 12.54 1.42 40.0 40.1 Crosses CCA-4261 X NIC-268216 0.61 10.0 6.76 1.12 33.4 30.2 CCA-4261 X Pant C-1 0.56 12.0 4.56 1.12 38.0 25.5 CCA-4261 x Punjab Lal 0.5 14.6 6.46 1.34 50.4 36.6 CCA-4261 x EC-519631 0.45 11.0 7.78 1.22 35.0 42.2 CCA-4261 x PBC-535 0.41 12.6 11.08 1.40 40.8 32.4 CCA-4261 x Perennial 0.47 11.0 6.12 1.02 44.0 30.5 CCA-4261 x Byadagi kaddi 0.16 9.0 9.40 1.44 95.0 120.1 CCA-4261 x Byadagi Dabbi 0.18 13.6 9.90 1.12 60.0 33.0 Mean (Parents) 0.21 13.33 6.71 0.98 33.02 25.64 Mean (crosses) 0.43 14.34 7.56 1.19 51.44 41.27 CD (0.05 %) 0.05 1.70 1.16 0.15 8.70 3.30 Table 17: Mean performance of quality and morphological traits of parent and hybrids in chilli Varanasi Pandey et al. (2008) 33 Female parent – CCA-4261(CMS) Male parent- Eight

Slide 34: 

character Per se performance Parents Crosses Min Max Min Max Capsaicin (%) 0.03 0.39 0.16 0.61 Oleoresin (%) 9.7 18 9 17.2 Fruit length (cm) 2.2 12.54 4.56 11.08 Fruit width (cm) 0.54 1.44 0.98 1.42 Fruits/plant 20.8 63.4 33.4 95 10 fruit weight (g) 5.5 40.1 22.1 120 Table 18: Performance of parents and crosses for quality and yield characters in chilli Varanasi Pandey et al. (2008) 34 Female parent – CCA-4261(CMS) Male parent- Eight

Slide 35: 

Table 19: Better parents heterosis and standard parent heterosis for different characters in chilli Hybrids Fruit Length Fruit weight Green fruit/plant BHP SH BHP SH BHP SH CCA-4759 x GCV-121 17.01** 32.51 * -2.90 12.15 47.59** 29.32** CCA-4759 x GCV-111 1.95 34.08** -16.66** -1.35 35.95** 20.87* CCA-4759 x P. G uhheddar -25.00** -15.06* -17.18* -16.59* -28.96** -41.85** CC P. G uhheddarA-4759 x -15.338 -3.04 -13.21 -35.37** -0.13 -44.89* Range Min. Max . -27.03 -16.74 13.97 37.49 -28.96 -44.89 17.01 42.31 0.34 0.34 47.59 29.32 SE ± 13.41 13.41 0.34 0.34 25.56 25.56 Anand Mokate (2009) Design : L x T Lines: three male sterile line Testers: 11 35 *, ** significant at 5 and 1 per cent level, respectively

Slide 36: 

36 36 Total no. of genotypes tested 27 Restorers Identified 10 CMS lines Promising Experimental Hybrids Fig 3: CMS Based Hybrid Trial In Chilli Conducted At MVRS, Anand 36

Slide 37: 

Onion 37

Slide 38: 

India is one of the leading producer in onion. The important component for exploiting heterosis in onion is male sterility. First onion hybrid developed as early as 1948 using exotic male sterile line and Indian local male stock. Sen and Srivastava (1957) 38

Slide 39: 

Material Number of florets per inflorescence Number of seeds per inflorescence Seed set (%) Viable seeds (%) Kujyo (A. cepa ) 434.6 ± 20.3 1935.2±180.1 73.9 ± 3.6 66.1 ± 1.3 Hybrids- MS x Kujyo 316.7 ± 12.5* 1568.0 ± 68.6 82.5 ± 0.6 66.3 ± 4.9 406.3 ± 15.5* 1654.3 ± 50.9 68.0 ± 4.0 44.7 ± 5.8 403.7 ± 6.6 2080.3 ± 28.61* 85.9 ± 0.9** 63.6 ± 3.3 330.7 ± 32.0 * 527.71 ± 49.1 79.4 ± 3.0 71.3 ± 4.9* 472.0 ± 54.0 2384.3 ± 201.5 * 84.6 ± 3.1* 57.1 ± 8.9 320.0 ± 32.2 * 1513.1 ± 10.8 79.2 ± 3.0 67.4 ± 6.0* 337.0 ± 26.9 * 1697.0 ± 89.2 84.3 ± 4.7* 66.0 ± 4.0* 332.0 ± 21.8 * 1654.0 ± 89.4 83.1 ± 1.2* 70.9 ± 5.4* 397.5 ± 10.3 2058.5 ± 73.20* 86.3 ± 0.8** 74.8 ± 0.9** 418.0 ± 17.4** 1612.0 ± 109.4 64.2 ± 1.8 49.2 ± 1.4* 410.0 ± 28.9 1855.7 ± 127.1 75.5 ± 0.6 49.6 ± 7.1* Table 20: The number of florets, seeds per inflorescence, seed set and viable seeds in cultivar ‘Kujyo’ and its hybrids in onion Japan Yamashita (2004) 39 *, ** significant at 5 and 1 per cent level, respectively Hybrids – 12 A. galanthus cytoplasm (MS) x cv. Kujyo (MF)

Slide 40: 

Parents Total bulb yield Bulb diameter Bulb firmness Total soluble solids Polar Equatorial Females MS-1 4.96** -0.06 0.02 -0.04 0.02 MS-8 4.83** 0.13 -0.05 -0.19 0.18 MS-39 -9.79** -0.06 0.04 0.23 -0.20 S. E. 1.22 0.07 0.08 0.12 0.18 Males Arka Nikrtan 9.77** 0.36* 0.11 -0.23 0.20 Arka kalyan 19.29** 0.50** 0.54** 0.50 -1.12* IHR-21 9.33** 0.08 0.17 0.28 -0.51 Series-95 -3.85 -0.54** -0.70** 0.15 2.34** S. E. gi 3.15 0.18 0.20 0.32 0.47 S. E. gi-gj 4.45 0.26 0.28 0.45 0.66 Table 21: General combining ability effects of parents for various characters in onion Bangalore Aghora and Pathak (1991) Design : L x T Lines: Three sterile line Testers: 20 40

Slide 41: 

crosses Heterosis for total bulb yield over Mid parent (%) Better parent (%) MS-1 x Arka Kalyan 58.00** 28.47 MS-1 x Nasik Early Red 90.24** 86.17** MS-8 x N-53 70.59** 66.94** MS-8 x Arka Niketan 54.29** 47.92* MS-1 x IHR-21 5 6.23 ** 65.67** Table 22: Per cent heterosis over mid and better parent for total bulb yield for five crosses Bangalore Aghora and Pathak (1991) Design : L x T Lines: Three sterile line Testers: 20 41 *, ** significant at 5 and 1 per cent level, respectively

Slide 42: 

SELF INCOMPATIBILITY 42

Slide 43: 

Gametophytic. SI reaction of a pollen is determined by its own genotype not by the genotype of the plant on which the pollen is produced Sporophytic. SI reaction of pollen is governed by the genotype of the plant on which the pollen is produced and not by the genotype of the pollen. McCubbin and Dickinson (1997) Types of self incompatibility 43

Slide 44: 

Stable self incompatibility. High seed set of self pollination at bud stage. Favorable and uniform economic characters. Desirable combination ability. 44 The superior self incompatible lines for hybrid seed production should possess the following characters

Slide 45: 

Cauliflower 45

Slide 46: 

Table 23: Number of siliqua setting from open pollination, sib mating, bud pollination and by bagging in Indian Cauliflower . Genotype Siliqua setting upon different pollination systems (%) Open pollination Sib mating Bud pollination Self pollination (Bagging) IIVR-1 70 65 50 00 IIVR-50 80 60 40 00 * kataki Early-29 95 75 25 00 *Hazipur-4 58 75 35 00 Pusi – 4 75 75 60 00 * Agahani JBT -23/60 75 95 15 00 *Late Agahani 60 50 20 00 *Aghani-8 75 80 25 00 Pusi Hazipur 90 95 55 00 Agahani-31 85 70 40 20 Agahani long leaf 75 65 50 00 * Agahani small leaf 70 60 35 00 Kuwari-1 80 50 50 00 Kataki-12 100 70 55 00 CD at 5% 11.86 3.58 4.07 - IIVR Varanashi Singh et al . (2002) 46 * High level of self incompatibility

Slide 47: 

Parents Number of leaves Curd size index Gross curd weight Net curd weight Days to 50% curd formation RSK-1301 0.684 51.29 ** 0.03 0.02 -4.92 ** Kt-25 0.045 12.72 ** 0.02 0.07 ** 4.05 ** PSBK-1 - 1.230** -7.24* -0.18** -0.05* 1.111 PSB-1 0.374 -3.05 0.99 ** 0.05 ** 0.92 Kt-8 0.537 11.20 ** 2.17 ** 0.12** 3.25 ** Kt-4 1.051** 13.58 ** 0.02 0.06 ** 0.85 Kt-9 - 1.491** -5.39 -0.12** -0.08** - 1.71** Kt-6 0.033 -27.04** -0.03 0.023 -3.25** SE (Gi) 0.262 3.327 0.032 1.22 Table 24: Estimation of general combining ability effect of parents in cauliflower IARI, New Delhi Thakur and Singh (1999) Parental line- Eight SI lines Crossed - Diallel set (excluding reciprocal) 47 *, ** significant at 5 and 1 per cent level, respectively

Slide 48: 

Crosses Number of leaves Gross curd weight Net curd weight Days to 50% curd formation RSK-1301 x Kt-25 2.67 * 0.747 ** 0.222 ** -11.34** RSK-1301 x PSBK-1 0.045 -0.445 ** 0.388 ** -2.44 RSK-1301 x Kt-8 -0.773 0.313 ** 0.101 -5.90 RSK-1301 x Kt-6 -2.969** -0.427** -0.218** 7.20 * PSB-1 x Kt-8 -4.203** 0.475 ** 0.383 ** 10.60 ** PSB-1 x Kt-6 4.471 ** -0.489** 0.177** -21.97** Kt-8 x Kt-4 3.082 ** -0.165 -0.045 -13.77** Kt-4 x Kt-4 1.338 0.399 ** 0.246 ** 2.63 Kt-4 x Kt-6 -0.656 0.376 0.308 -8.57** Kt-4 x Kt-6 -2.614 -0.124 -0.042 -0.007 SE ( Sij ) 0.700 0.086 0.061 3.225 Table 25: Estimates of specific combining ability effects of F 1 hybrids in cauliflower. IARI , New Delhi Thakur and Singh (1999) Parental line- Eight SI lines Crossed - Diallel set (excluding reciprocal) 48 *, ** significant at 5 and 1 per cent level, respectively

Slide 49: 

Table 26: Per cent heterosis over better parents for different characters in cauliflower Crosses Days to maturity Gross weight Marketable yield Curd size index KJ-38 x PSB-1 -2.65 13.65 3.30 27.44* KJ-39 x PSBK-1 -3.97* 38.56* 22.51* 26.66* Snowball-16 x PSB-1 -3.12 33.91* 32.60* 29.49* Pyramis x PSBK-1 -12.53* 14.20 6.88 3.39 Janavon x PSB-1 -5.22* 40.02* 26.91* 24.91* RSK-1301 x PSBK-1 -9.06* 31.01* 38.41** 19.38** Pusa Synthetic x PSB-1 -1.91 4.18 12.52 4.12 PUHF Nauni Thakur et al. (2001) 49 Female – seven SI lines Male Parents- PSB-1, PSBK-1 *, ** significant at 5 and 1 per cent level, respectively

Slide 50: 

RADISH 50

Slide 51: 

Lines/varieties Number of seeds per siliqua Natural Cross Pollination Bud pollination Self pollination in freshly opened flowers self pollination (bagging) * Pusa Chetaki 5.31 3.11 0.04 0.00 * Pusa Desi 5.40 4.64 0.03 0.00 **Half Red 6.00 1.80 0.00 0.00 Acc. No. 30205 4.76 3.51 4.40 1.23 **Acc . No. 282 5.83 4.08 0.00 0.00 **Chinese Pink 3.82 2.09 0.00 0.00 *BDJ-689 5.85 4.96 0.06 0.00 Table 27: Seed set in radish lines under different types of pollination. IARI, New Delhi Kutty and Sirohi (2004) **Fully self incompatible *Highly self incompatibility 51

Slide 52: 

Characters Crosses Heterosis in F 1 over- Mid parent (%) Better parent (%) Root yield Japanese White x White Round 98.55 93.07 Chinese Pink x Scarlet Globe 64.07 48.44 Number of leaves Japanese White x Chinese Pink 18.81 8.13 Chinese Pink x Scarlet Globe 29.72 29.21 Leaf length Japanese White x Chinese Pink 14.99 11.74 Chinese Pink x Scarlet Globe 30.23 25.69 Leaf weight Japanese White x Chinese Pink 54.86 34.47 Chinese Pink x Scarlet Globe 42.71 14.15 Palampur Chandel and Singh (1996) Table 28: Heterosis (%) over mid parents and better parent in radish. 52

Slide 53: 

Crosses Root yield Root weight Root length BP SC1 SC2 BP SC1 SC2 BP SC1 SC2 Mino Early White x Pusa Himani 103.90 * 59.02 * 63.11 * 115.18 * 88.54 * 93.62 * 46.79 * 30.46 * 45.46 * Japanese White x DPR-1 98.25* 56.27* 60.29* 113.84* 82.84* 87.78* 44.39* 34.39* 49.85* Chinese Pink x Nadauni 93.62* 55.59* 59.66* 122.93* 82.08* 86.99* 49.91* 36.24* 51.22* Summer long x Pusa Himani 92.39* 50.39* 54.26* 86.19* 54.64* 58.81* 29.85* 14.68* 27.94* CD at 5% 2.61 2.61 2.61 7.42 7.42 7.42 2.73 2.73 2.73 Table 29: Heterosis over BP, SC1 and SC2 expressed in percentage for various characters in radish. Palampur Kumar et al. (2002) *significant at 5% level BP- Better Parent SC1- Standard check1 SC2 - Standard check2 Design : L x T Lines: 14 Testers: Four 53

Slide 54: 

Sr. no. Lines Root weight Root length Root girth Root diameter 1 Japanese White 18.89* 1.39* 0.86* 0.35* 2 Chinese Pink 39.48* 2.83* 0.75* 0.48* 3 Mino Early White 39.48* 2.83* 0.75* 0.48* 4 Pusa Reshmi -42.27* -2.76* -1.05* -0.53* 7 Pusa Chetaki 32.89* 2.16* 0.60 0.48* 12 Paprola Local 2.27* -0.07 0.35 0.11* CD (5%) 0.93 0.68 0.08 Table 30: Estimation of general combining ability effect of different lines and testers in radish Palampur Chandel et al. (2002) Tester 1 Pusa Himani 9.32* 0.53* -0.30 0.12* 2 Nadauni -4.41* -0.33 -0.21 0.10* 3 Palam Hirday 2.25* 0.15 0.39* 0.02* 4 White Icicle -7.20 -0.36 0.12 -0.04* CD (5%) 1.34 0.50 0.36 0.04 Design : L x T Lines: 14 Testers: Four *significant at 5% level 54

Slide 55: 

Table 31: Estimates of general combining ability effects of parents in radish Parents Days to harvest Root weight Leaves /plant Root length Yield /plant 1 Pusa Chetaki -5.27** -33.48** -2.66** -1.31** -88.83** 2 Pusa Desi -1.97** 28.79** -2.15** 2.21** 21.10* 3 Half Red 0.60 1.15 -2.30** 0.46 -24.57. 4 Acc. No. 30205 4.60* 76.22** 4.28** 5.33** 149.97 ** 5 Acc. No. 282 1.90** 52.42** 1.73** 0.07 44.33** 6 Acc. No.192 9.17** 20.69** 3.87** 2.19** 146.43 ** 7 Chinese Pink 0.70 36.15** 0.25 0.40** 35.77** 8 BDJ-689 -11.53** -181.95** -3.03** -1.16** -284.20 S . E. ( gi ) 0.331 5.834 0.141 0.043 9.974 IARI Kutty and siroshi (2003) Parental line- Eight Crossed - Diallel fashion (excluding reciprocal) 55

Slide 56: 

Table 32: Estimates of specific combining ability effects of F 1 hybrids in radish Crosses Days to harvest Root weight Leaves / plant Root length Yield / plant Pusa Chetaki x Acc. No. 30205 0.67 -12.09 0.39 -1.07 135.07** Pusa Chetaki x Chinese Pink 4.23** 92.98** 0.34 4.77** 106.73** Pusa Desi x BDJ-689 -0.17 20.48 0.66 2.52** 222.18** Acc. No. 30205 x Acc. No.192 -0.77 178.08 ** 4.63** 2.84 ** 216.60 ** Acc. No. 30205 x Chinese Pink -5.97** -73.39** -2.60** 2.74** 180.53** Acc. No. 282 x Acc. No.192 2.6* 108.54 ** 3.78** 3.19** 191.37** Acc. No.192 x BDJ-689 -5.63** -38.09* -1.79** -1.26 -62.43** Chinese Pink x BDJ-689 6.17** 34.78 1.15** 3.43** 116.10** SE (Sij) 1.033 17.882 0.431 0.723 26.597 Parental line- Eight Crossed - Diallel fashion (excluding reciprocal) IARI Kutty and siroshi (2003) 56

Slide 57: 

Fig. 4: Male sterile and self incompatibility genotypes available in India Male sterility Self incompatibility TOMATO Ludhiana ms33 IPA ms2 IPA ps2 L 3841 ps2 NS 101 ps2 San Pedro ps2 UC 82-B ms 10 36 ms 45 ms 15 47 CHILLI Anand CCA 4261 CCA 4759 CCA 4758 Ludhiana CCA 4261 ONION Bangalore Ms1 Ms2 ms3 RADISH IARI NEW DELHI Pusa Chetaki Pusa Desi Half Red Acc. No. 30205 Acc. No. 282 Chinese Pink BDJ-689 CAULIFLOWER Varanashi IIVR-1 IIVR-50 kataki Early-29 HAZIPUR-4(BP) Pusi – 4 Agahani JBT -23/60 Late Agahani Aghani-8 Pusi Hazipur Agahani long leaf Agahani small leaf Kuwari-1 Kataki-12 57

Slide 58: 

58 CONCLUSION Male sterile lines are available in many crops useful for developing hybrid vigour. Functional male sterility governed by ps-2 gene in tomato has indisputable advantage. GMS and CGMS are utilized for hybrid seed production in chilli. MS line having S, T and G cytoplasm are utilized for hybrid seed production in onion. Highly self incompatible lines are available in radish and cauliflower for its commercial utilization in hybrid seed production. The male sterility and self incompatibility are becoming increasingly important for hybrid seed production in vegetables crops. Pollination control mechanism is helpful for making the hybrid seed production profitable by reducing cost.

Slide 59: 

THANK YOU