pewarisan sifat

Views:
 
Category: Entertainment
     
 

Presentation Description

No description available.

Comments

Presentation Transcript

Slide 1: 

DASAR – DASAR PEWARISAN MENDEL Anjas Sasana Bahri, S.Pi, MP Lecture Two GENETIKA DAN PEMULIAAN IKAN

Slide 3: 

Sebelum Mendel Orang Babilonia dan Assyria kuno kurma dioecious Polen dari sedikit saja tanaman ♂ dapat ditransfer ke stigma 1. Berguna secara ekonomi Diperlukan sedikit tan ♂ 2. Meningkatkan variasi Cara pewarisan sifat belum diketahui Introduction

Slide 4: 

Tahun 1760: Josef Fölreuter (Jerman) Hibrid intermediet sama dengan salah satu induk Persilangan sendiri terus-menerus memunculkan kembali sifat-sifat yang tidak muncul pada generasi sebelumnya Tahun 1820: Karl Freidrichvon Gaertner (Jerman) Sifat-sifat tertentu yang “disukai”

Slide 5: 

Seorang biarawan dari Austria, bernama Gregor Johann Mendel, menjelang akhir abad ke-19 melakukan serangkaian percobaan persilangan pada kacang ercis (Pisum sativum). Dari percobaan yang dilakukannya selama bertahun-tahun tersebut, Mendel berhasil menemukan prinsip-prinsip pewarisan sifat, yang kemudian menjadi landasan utama bagi perkembangan genetika sebagai suatu cabang ilmu pengetahuan. Berkat karyanya inilah, Mendel diakui sebagai Bapak Genetika. Mendellian

Slide 6: 

Mendel memilih kacang ercis sebagai bahan percobaannya, terutama karena tanaman ini memiliki beberapa pasang sifat yang sangat mencolok perbedaannya, misalnya warna bunganya mudah sekali untuk dibedakan antara yang ungu dan yang putih. Selain itu, kacang ercis merupakan tanaman yang dapat menyerbuk sendiri, dan dengan bantuan manusia, dapat juga menyerbuk silang. Hal ini disebabkan oleh adanya bunga sempurna, yaitu bunga yang mempunyai alat kelamin jantan dan betina.

Slide 7: 

Pertimbangan lainnya adalah bahwa kacang ercis memiliki daur hidup yang relatif pendek, serta mudah untuk ditumbuhkan dan dipelihara. Mendel juga beruntung, karena secara kebetulan kacang ercis yang digunakannya merupakan tanaman diploid (mempunyai dua perangkat kromosom). Seandainya ia menggunakan organisme poliploid, maka ia tidak akan memperoleh hasil persilangan yang sederhana dan mudah untuk dianalisis.

Slide 8: 

Pada salah satu percobaannya Mendel menyilangkan tanaman kacang ercis yang tinggi dengan yang pendek. Tanaman yang dipilih adalah tanaman galur murni, yaitu tanaman yang kalau menyerbuk sendiri tidak akan menghasilkan tanaman yang berbeda dengannya. Dalam hal ini tanaman tinggi akan tetap menghasilkan tanaman tinggi. Begitu juga tanaman pendek akan selalu menghasilkan tanaman pendek.

Slide 9: 

Dengan menyilangkan galur murni tinggi dengan galur murni pendek, Mendel mendapatkan tanaman yang semuanya tinggi. Selanjutnya, tanaman tinggi hasil persilangan ini dibiarkan menyerbuk sendiri. Ternyata keturunannya memperlihatkan nisbah (perbandingan) tanaman tinggi terhadap tanaman pendek sebesar 3 : 1.

Slide 10: 

Individu tinggi dan pendek yang digunakan pada awal persilangan dikatakan sebagai tetua (parental), disingkat P. Hasil persilangannya merupakan keturunan (filial) generasi pertama, disingkat F1. Persilangan sesama individu F1 menghasilkan keturunan generasi ke dua, disingkat F2. Tanaman tinggi pada generasi P dilambangkan dengan DD, sedang tanaman pendek dd. Sementara itu, tanaman tinggi yang diperoleh pada generasi F1 dilambangkan dengan Dd.

Slide 16: 

Mendel mulai dari menyilangkan tanaman dengan Hasilnya Sampel Dominan Resesif Rasio 7.324 biji 5.474 bulat 1.850 keriput 2.96 : 1 8.023 biji 6.022 kuning 2.001 hijau 3.01 : 1 929 tanaman 705 bunga ungu 224 bunga putih 3.15 : 1 580 tanaman 428 polong hijau 152 polong kuning 2.82 : 1 1 sifat beda

Slide 17: 

Pada diagram persilangan monohibrid tersebut di atas, nampak bahwa untuk menghasilkan individu Dd pada F1, maka baik DD maupun dd pada generasi P membentuk gamet (sel kelamin). Individu DD membentuk gamet D, sedang individu dd membentuk gamet d. Dengan demikian, individu Dd pada F1 merupakan hasil penggabungan kedua gamet tersebut. Begitu pula halnya, ketika sesama individu Dd ini melakukan penyerbukan sendiri untuk menghasilkan F2, maka masing-masing akan membentuk gamet terlebih dahulu.

Slide 18: 

Gamet yang dihasilkan oleh individu Dd ada dua macam, yaitu D dan d. Selanjutnya, dari kombinasi gamet-gamet tersebut diperoleh individu-individu generasi F2 dengan nisbah DD : Dd : dd = 1 : 2 : 1. Jika DD dan dd dikelompokkan menjadi satu (karena sama-sama melambangkan individu tinggi), maka nisbah tersebut menjadi D- : dd = 3 : 1.

Slide 19: 

Pewarisan suatu sifat ditentukan oleh pewarisan materi tertentu, yang dalam contoh tersebut dilambangkan dengan D atau d. Mendel menyebut materi yang diwariskan ini sebagai FAKTOR KETURUNAN (HEREDITER), yang pada perkembangan berikutnya hingga sekarang dinamakan GEN.

Slide 20: 

Terminologi P adalah individu tetua, F1 adalah keturunan generasi pertama, dan F2 adalah keturunan generasi ke dua. Selanjutnya, gen D dikatakan sebagai GEN atau ALEL DOMINAN, sedang gen d merupakan GEN atau ALEL RESESIF. Alel adalah bentuk alternatif suatu gen yang terdapat pada lokus (tempat) tertentu. Gen D dikatakan dominan terhadap gen d, karena ekpresi gen D akan menutupi ekspresi gen d jika keduanya terdapat bersama-sama dalam satu individu (Dd). Dengan demikian, gen dominan adalah gen yang ekspresinya menutupi ekspresi alelnya. Sebaliknya, gen resesif adalah gen yang ekspresinya ditutupi oleh ekspresi alelnya.

Slide 21: 

Individu Dd dinamakan individu HETEROZIGOT, sedang individu DD dan dd masing-masing disebut sebagai individu HOMOZIGOT DOMINAN dan HOMOZIGOT RESESIF. Sifat-sifat yang dapat langsung diamati pada individu-individu tersebut, yakni tinggi atau pendek, dinamakan FENOTIPE. Jadi, fenotipe adalah ekspresi gen yang langsung dapat diamati sebagai suatu sifat pada suatu individu. Sementara itu, susunan genetik yang mendasari pemunculan suatu sifat dinamakan GENOTIPE. Pada contoh tersebut di atas, fenotipe tinggi (D-) dapat dihasilkan dari genotipe DD atau Dd, sedang fenotipe pendek (dd) hanya dihasilkan dari genotipe dd. Nampak bahwa pada individu homozigot resesif, lambang untuk fenotipe sama dengan lambang untuk genotipe

Slide 22: 

KESIMPULAN 1. Sifat dikontrol oleh faktor yang menurun 2. Setiap individu memiliki sepasang faktor (kecuali pada sel reproduktif) 3. Faktor diteruskan (segregasi) ke keturunan melalui sel reproduktif (mendapat 1 faktor dari pasangan faktor) 4. Pada fertilisasi tiap faktor memiliki peluang yang sama untuk berpasangan GEN ALEL Faktor yang mengendalikan/gen genotipe Karakter yang terlihat yang dikontrol oleh gen fenotipe

Slide 23: 

Versi alternatif gen (alel-alel yang berbeda) menjelaskan adanya variasi karakter yang diwarisi. Versi alternatif dari gen disebut alel. Jika kedua alel berbeda, maka salah satunya alel dominan diekspresikan sepenuhnya dalam penampakan organisme, alel yang satunya alel resesif.

Slide 24: 

Hukum Segregasi Sebelum melakukan suatu persilangan, setiap individu menghasilkan gamet-gamet yang kandungan gennya separuh dari kandungan gen pada individu. Sebagai contoh, individu DD akan membentuk gamet D, dan individu dd akan membentuk gamet d. Pada individu Dd, yang menghasilkan gamet D dan gamet d, akan terlihat bahwa gen D dan gen d akan dipisahkan (disegregasi) ke dalam gamet-gamet yang terbentuk tersebut. Prinsip inilah yang kemudian dikenal sebagai HUKUM SEGREGASI atau HUKUM MENDEL I.

Slide 25: 

Hukum Segregasi : Pada waktu berlangsung pembentukan gamet, tiap pasang gen akan disegregasi ke dalam masing-masing gamet yang terbentuk.

Slide 26: 

Hukum Pemilihan Bebas Persilangan yang hanya menyangkut pola pewarisan satu macam sifat seperti yang dilakukan oleh Mendel tersebut di atas dinamakan persilangan MONOHIBRID. Selain persilangan monohibrid, Mendel juga melakukan persilangan DIHIBRID, yaitu persilangan yang melibatkan pola perwarisan dua macam sifat seketika.

Slide 27: 

Salah satu di antaranya adalah persilangan galur murni kedelai berbiji kuning-halus dengan galur murni berbiji hijau-keriput. Hasilnya berupa tanaman kedelai generasi F1 yang semuanya berbiji kuning-halus. Ketika tanaman F1 ini dibiarkan menyerbuk sendiri, maka diperoleh empat macam individu generasi F2, masing-masing berbiji kuning-halus, kuning-keriput, hijau-halus, dan hijau-keriput dengan nisbah 9 : 3 : 3 : 1. Jika gen yang menyebabkan biji berwarna kuning dan hijau masing-masing adalah gen G dan g, sedang gen yang menyebabkan biji halus dan keriput masing-masing adalah gen W dan gen w

Slide 28: 

P : ♀ Kuning, halus x Hijau, keriput ♂ GGWW ggww Gamet GW gw  F1 : Kuning, halus GgWw Menyerbuk sendiri (GgWw x GgWw )  F2 :

Slide 29: 

Dapat dilihat bahwa fenotipe F2 memiliki nisbah 9 : 3 : 3 : 1 sebagai akibat terjadinya segregasi gen G dan W secara independen. Dengan demikian, gamet-gamet yang terbentuk dapat mengandung kombinasi gen dominan dengan gen dominan (GW), gen dominan dengan gen resesif (Gw dan gW), serta gen resesif dengan gen resesif (gw). Hal inilah yang kemudian dikenal sebagai HUKUM PEMILIHAN BEBAS (The Law of Independent Assortment) atau HUKUM MENDEL II.

Slide 30: 

Hukum Pemilihan Bebas : Segregasi suatu pasangan gen tidak bergantung kepada segregasi pasangan gen lainnya, sehingga di dalam gamet-gamet yang terbentuk akan terjadi pemilihan kombinasi gen-gen secara bebas.

Slide 31: 

Formulasi Matematika Pada Berbagai Macam Persilangan Individu F1 pada suatu persilangan monohibrid, misalnya Aa, akan menghasilkan dua macam gamet, yaitu A dan a. Gamet-gamet ini, baik dari individu jantan maupun betina, akan bergabung menghasilkan empat individu F2 yang dapat dikelompokkan menjadi dua macam fenotipe (A- dan aa) atau tiga macam genotipe (AA, Aa, dan aa).

Slide 32: 

Sementara itu, individu F1 pada persilangan dihibrid, misalnya AaBb, akan membentuk empat macam gamet, masing-masing AB,Ab, aB, dan ab. Selanjutnya pada generasi F2 akan diperoleh 16 individu yang terdiri atas empat macam fenotipe (A-B-, A-bb, aaB-, dan aabb) atau sembilan macam genotipe (AABB, AABb, Aabb, AaBB, AaBb, Aabb, aaBB, aaBb, dan aabb)

Slide 33: 

Dari angka-angka tersebut akan terlihat adanya hubungan matematika antara jenis persilangan (banyaknya pasangan gen), macam gamet F1, jumlah individu F2, serta macam fenotipe dan genotipe F2. Hubungan matematika akan diperoleh pula pada persilangan-persilangan yang melibatkan pasangan gen yang lebih banyak (trihibrid, tetrahibrid, dan seterusnya), sehingga secara ringkas dapat ditentukan formulasi matematika

Slide 34: 

Pada kolom terakhir dapat dilihat adanya formulasi untuk nisbah fenotipe F2. Kalau angka-angka pada nisbah 3 : 1 dijumlahkan lalu dikuadratkan, maka akan didapatkan ( 3 + 1 )2 = 32 + 2.3.1 + 12 = 9 + 3 + 3 + 1, yang tidak lain merupakan angka-angka pada nisbah hasil persilangan dihibrid. Demikian pula jika dilakukan pemangkattigaan, maka akan diperoleh ( 3 + 1 )3 = 33 + 3.32.11 + 3.31.12+ 13 = 27 + 9 + 9 + 9 + 3 + 3 + 3 + 1, yang merupakan angka-angka pada nisbah hasil persilangan trihibrid.

Slide 35: 

Silang Balik (Back Cross) and Silang Uji (Test Cross) Silang balik ialah persilangan suatu individu dengan salah satu tetuanya. Sebagai contoh, individu Aa hasil persilangan antara AA dan aa dapat disilangbalikkan, baik dengan AA maupun aa. Silang balik antara Aa dan AA akan menghasilkan satu macam fenotipe, yaitu A-, atau dua macam genotipe, yaitu AA dan Aa dengan nisbah 1 : 1. Sementara itu, silang balik antara Aa dan aa akan menghasilkan dua macam fenotipe, yaitu A- dan aa dengan nisbah 1 : 1, atau dua macam genotipe, yaitu Aa dan aa dengan nisbah 1 : 1.

Slide 36: 

Manfaat praktis silang balik adalah untuk memasukkan gen tertentu yang diinginkan ke dalam suatu individu. Melalui silang balik yang dilakukan berulang-ulang, dapat dimungkinkan terjadinya pemisahan gen-gen tertentu yang terletak pada satu kromosom sebagai akibat berlangsungnya peristiwa pindah silang.

Slide 37: 

Apabila suatu silang balik dilakukan dengan tetuanya yang homozigot resesif, maka silang balik semacam ini disebut juga silang uji. Akan tetapi, silang uji sebenarnya tidak harus terjadi antara suatu individu dan tetuanya yang homozigot resesif. Pada prinsipnya semua persilangan yang melibatkan individu homozigot resesif (baik tetua maupun bukan tetua) dinamakan silang uji.

Slide 38: 

Istilah silang uji digunakan untuk menunjukkan bahwa persilangan semacam ini dapat menentukan genotipe suatu individu. Sebagai contoh, suatu tanaman yang fenotipenya tinggi (D-) dapat ditentukan genotipenya (DD atau Dd) melalui silang uji dengan tanaman homozigot resesif (dd).

Slide 39: 

DD x dd Dd x dd   Dd (tinggi) 1 Dd (tinggi) 1 dd (pendek) Jadi, apabila tanaman tinggi yang disilang uji adalah homozigot (DD), maka hasilnya berupa satu macam fenotipe, yaitu tanaman tinggi. Sebaliknya, jika tanaman tersebut heterozigot (Dd), maka hasilnya ada dua macam fenotipe, yaitu tanaman tinggi dan pendek dengan nisbah 1 : 1.

Slide 40: 

Modifikasi Nisbah Mendel Percobaan-percobaan persilangan sering kali memberikan hasil yang seakan-akan menyimpang dari hukum Mendel. Dalam hal ini tampak bahwa nisbah fenotipe yang diperoleh mengalami modifikasi dari nisbah yang seharusnya sebagai akibat terjadinya aksi gen tertentu. Secara garis besar modifikasi nisbah Mendel dapat dibedakan menjadi dua kelompok, yaitu modifikasi nisbah 3 : 1 dan modifikasi nisbah 9 : 3 : 3 : 1.

Slide 41: 

Modifikasi Nisbah 3 : 1 Ada tiga peristiwa yang menyebabkan terjadinya modifikasi nisbah 3 : 1, yaitu semi dominansi Kodominansi gen letal

Slide 42: 

Semi Dominansi Peristiwa semi dominansi terjadi apabila suatu gen dominan tidak menutupi pengaruh alel resesifnya dengan sempurna, sehingga pada individu heterozigot akan muncul sifat antara (intermedier). Dengan demikian, individu heterozigot akan memiliki fenotipe yang berbeda dengan fenotipe individu homozigot dominan. Akibatnya, pada generasi F2 tidak didapatkan nisbah fenotipe 3 : 1, tetapi menjadi 1 : 2 : 1 seperti halnya nisbah genotipe.

Slide 43: 

Contoh peristiwa semi dominansi dapat dilihat pada pewarisan warna bunga pada tanaman bunga pukul empat (Mirabilis jalapa). Gen yang mengatur warna bunga pada tanaman ini adalah M, yang menyebabkan bunga berwarna merah, dan gen m, yang menyebabkan bunga berwarna putih. Gen M tidak dominan sempurna terhadap gen m, sehingga warna bunga pada individu Mm bukannya merah, melainkan merah muda. Oleh karena itu, hasil persilangan sesama genotipe Mm akan menghasilkan generasi F2 dengan nisbah fenotipe merah : merah muda : putih = 1 : 2 : 1.

Slide 44: 

Kodominansi Seperti halnya semi dominansi, peristiwa kodominansi akan menghasilkan nisbah fenotipe 1 : 2 : 1 pada generasi F2. Bedanya, kodominansi tidak memunculkan sifat antara pada individu heterozigot, tetapi menghasilkan sifat yang merupakan hasil ekspresi masing-masing alel. Dengan perkataan lain, kedua alel akan sama-sama diekspresikan dan tidak saling menutupi.

Slide 45: 

Peristiwa kodominansi dapat dilihat misalnya pada pewarisan golongan darah sistem ABO pada manusia. Gen IA dan IB masing-masing menyebabkan terbentuknya antigen A dan antigen B di dalam eritrosit individu yang memilikinya. Pada individu dengan golongan darah AB (bergenotipe IAIB) akan terdapat baik antigen A maupun antigen B di dalam eritrositnya. Artinya, gen IA dan IB sama-sama diekspresikan pada individu heterozigot tersebut

Slide 46: 

Perkawinan antara laki-laki dan perempuan yang masing-masing memiliki golongan darah AB IAIB x IAIB  1 IAIA (golongan darah A) 2 IAIB (golongan darah AB) 1 IBIB (golongan darah B) Golongan darah A : AB : B = 1 : 2 : 1

Slide 47: 

Gen Letal Gen letal ialah gen yang dapat mengakibatkan kematian pada individu homozigot. Kematian ini dapat terjadi pada masa embrio atau beberapa saat setelah kelahiran. Akan tetapi, adakalanya pula terdapat sifat subletal, yang menyebabkan kematian pada waktu individu yang bersangkutan menjelang dewasa.

Slide 48: 

Ada dua macam gen letal, yaitu gen letal dominan dan gen letal resesif. Gen letal dominan dalam keadaan heterozigot dapat menimbulkan efek subletal atau kelainan fenotipe, sedang gen letal resesif cenderung menghasilkan fenotipe normal pada individu heterozigot.

Slide 49: 

Peristiwa letal dominan antara lain dapat dilihat pada ayam redep (creeper), yaitu ayam dengan kaki dan sayap yang pendek serta mempunyai genotipe heterozigot (Cpcp). Ayam dengan genotipe CpCp mengalami kematian pada masa embrio. Apabila sesama ayam redep dikawinkan, akan diperoleh keturunan dengan nisbah fenotipe ayam redep (Cpcp) : ayam normal (cpcp) = 2 : 1. Hal ini karena ayam dengan genotipe CpCp tidak pernah ada.

Slide 50: 

Sementara itu, gen letal resesif misalnya adalah gen penyebab albino pada tanaman jagung. Tanaman jagung dengan genotipe gg akan mengalami kematian setelah cadangan makanan di dalam biji habis, karena tanaman ini tidak mampu melakukan fotosintesis sehubungan dengan tidak adanya khlorofil. Tanaman Gg memiliki warna hijau kekuningan, sedang tanaman GG adalah hijau normal. Persilangan antara sesama tanaman Gg akan menghasilkan keturunan dengan nisbah fenotipe normal (GG) : kekuningan (Gg) = 1 : 2.

Slide 51: 

Modifikasi Nisbah 9 : 3 : 3 : 1 Modifikasi nisbah 9 : 3 : 3 : 1 disebabkan oleh peristiwa yang dinamakan epistasis, yaitu penutupan ekspresi suatu gen nonalelik. Jadi, dalam hal ini suatu gen bersifat dominan terhadap gen lain yang bukan alelnya. Ada beberapa macam epistasis, masing-masing menghasilkan nisbah fenotipe yang berbeda pada generasi F2.

Slide 52: 

Epistasis Resesif Peristiwa epistasis resesif terjadi apabila suatu gen resesif menutupi ekspresi gen lain yang bukan alelnya. Akibat peristiwa ini, pada generasi F2 akan diperoleh nisbah fenotipe 9 : 3 : 4. Contoh epistasis resesif dapat dilihat pada pewarisan warna bulu mencit (Mus musculus). Ada dua pasang gen nonalelik yang mengatur warna bulu pada mencit, yaitu gen A menyebabkan bulu berwarna kelabu, gen a menyebabkan bulu berwarna hitam, gen C menyebabkan pigmentasi normal, dan gen c menyebabkan tidak ada pigmentasi.

Slide 53: 

Persilangan antara mencit berbulu kelabu (AACC) dan albino (aacc) P : AACC x aacc kelabu albino  F1 : AaCc kelabu F2 : 9 A-C- kelabu 3 A-cc albino kelabu : hitam : albino = 3 aaC- hitam 9 : 3 : 4 1 aacc albino

Slide 54: 

Epistasis Dominan Pada peristiwa epistasis dominan terjadi penutupan ekspresi gen oleh suatu gen dominan yang bukan alelnya. Nisbah fenotipe pada generasi F2 dengan adanya epistasis dominan adalah 12 : 3 : 1. Peristiwa epistasis dominan dapat dilihat misalnya pada pewarisan warna buah waluh besar (Cucurbita pepo). Dalam hal ini terdapat gen Y yang menyebabkan buah berwarna kuning dan alelnya y yang menyebabkan buah berwarna hijau. Selain itu, ada gen W yang menghalangi pigmentasi dan w yang tidak menghalangi pigmentasi.

Slide 55: 

Persilangan antara waluh putih (WWYY) dan waluh hijau (wwyy) menghasilkan nisbah fenotipe generasi F2 P : WWYY x wwyy putih hijau  F1 : WwYy putih F2 : 9 W-Y- putih 3 W-yy putih putih : kuning : hijau = 3 wwY- kuning 12 : 3 : 1 1 wwyy hijau

Slide 56: 

Epistasis Resesis Ganda Apabila gen resesif dari suatu pasangan gen, katakanlah gen I, epistatis terhadap pasangan gen lain, katakanlah gen II, yang bukan alelnya, sementara gen resesif dari pasangan gen II ini juga epistatis terhadap pasangan gen I, maka epistasis yang terjadi dinamakan epistasis resesif ganda. Epistasis ini menghasilkan nisbah fenotipe 9 : 7 pada generasi F2.

Slide 57: 

Sebagai contoh peristiwa epistasis resesif ganda dapat dikemukakan pewarisan kandungan HCN pada tanaman Trifolium repens. Terbentuknya HCN pada tanaman ini : gen L gen H   Bhn dasar enzim L glukosida sianogenik enzim H HCN

Slide 58: 

Gen L menyebabkan terbentuknya enzim L yang mengatalisis perubahan bahan dasar menjadi bahan antara berupa glukosida sianogenik. Alelnya, l, menghalangi pembentukan enzim L. Gen H menyebabkan terbentuknya enzim H yang mengatalisis perubahan glukosida sianogenik menjadi HCN, sedangkan gen h menghalangi pembentukan enzim H. Dengan demikian, l epistatis terhadap H dan h, sementara h epistatis terhadap L dan l. Persilangan dua tanaman dengan kandungan HCN sama-sama rendah tetapi genotipenya berbeda (LLhh dengan llHH)

Slide 59: 

P : LLhh x llHH HCN rendah HCN rendah  F1 : LlHh HCN tinggi F2 : 9 L-H- HCN tinggi 3 L-hh HCN rendah HCN tinggi : HCN rendah = 3 llH- HCN rendah 9 : 7 1 llhh HCN rendah

Slide 60: 

Epistasis Dominan Ganda Apabila gen dominan dari pasangan gen I epistatis terhadap pasangan gen II yang bukan alelnya, sementara gen dominan dari pasangan gen II ini juga epistatis terhadap pasangan gen I, maka epistasis yang terjadi dinamakan epistasis dominan ganda. Epistasis ini menghasilkan nisbah fenotipe 15 : 1 pada generasi F2. Contoh peristiwa epistasis dominan ganda dapat dilihat pada pewarisan bentuk buah Capsella. Ada dua macam bentuk buah Capsella, yaitu segitiga dan oval. Bentuk segitiga disebabkan oleh gen dominan C dan D, sedang bentuk oval disebabkan oleh gen resesif c dan d. Dalam hal ini C dominan terhadap D dan d, sedangkan D dominan terhadap C dan c.

Slide 61: 

P : CCDD x ccdd segitiga oval  F1 : CcDd segitiga F2 : 9 C-D- segitiga 3 C-dd segitiga segitiga : oval = 15 : 1 3 ccD- segitiga 1 ccdd oval

Slide 62: 

Epistasis Dominan Resesif Epistasis dominan-resesif terjadi apabila gen dominan dari pasangan gen I epistatis terhadap pasangan gen II yang bukan alelnya, sementara gen resesif dari pasangan gen II ini juga epistatis terhadap pasangan gen I. Epistasis ini menghasilkan nisbah fenotipe 13 : 3 pada generasi F2. Contoh peristiwa epistasis dominan-resesif dapat dilihat pada pewarisan warna bulu ayam ras. Dalam hal ini terdapat pasangan gen I, yang menghalangi pigmentasi, dan alelnya, i, yang tidak menghalangi pigmentasi. Selain itu, terdapat gen C, yang menimbulkan pigmentasi, dan alelnya, c, yang tidak menimbulkan pigmentasi. Gen I dominan terhadap C dan c, sedangkan gen c dominan terhadap I dan i.

Slide 63: 

P : IICC x iicc putih putih  F1 : IiCc putih F2 : 9 I-C- putih 3 I-cc putih putih : berwarna = 13 : 3 3 iiC- berwarna 1 iicc putih

Slide 64: 

Epistasis Gen Duplikat Dengan Efek Kumulatif Pada Cucurbita pepo dikenal tiga macam bentuk buah, yaitu cakram, bulat, dan lonjong. Gen yang mengatur pemunculan fenotipe tersebut ada dua pasang, masing-masing B dan b serta L dan l. Apabila pada suatu individu terdapat sebuah atau dua buah gen dominan dari salah satu pasangan gen tersebut, maka fenotipe yang muncul adalah bentuk buah bulat (B-ll atau bbL-). Sementara itu, apabila sebuah atau dua buah gen dominan dari kedua pasangan gen tersebut berada pada suatu individu, maka fenotipe yang dihasilkan adalah bentuk buah cakram (B-L-). Adapun fenotipe tanpa gen dominan (bbll) akan berupa buah berbentuk lonjong. Pewarisan sifat semacam ini dinamakan epistasis gen duplikat dengan EFEK KUMULATIF.

Slide 65: 

P : BBLL x bbll cakram lonjong  F1 : BbLl cakram F2 : 9 B-L- cakram 3 B-ll bulat cakram : bulat : lonjong = 9 : 6 : 1 3 bbL- bulat 1 bbll lonjong

Slide 66: 

To be Continous Next Episode