Parallelograms Quadrilaterals are four-sided polygons Parallelogram : is a quadrilateral with both pairs of opposite sides parallel.

Parallelograms (2):

Parallelograms (2) Theorem 6.1 : Opposite sides of a parallelograms are congruent Theorem 6.2: Opposite angles of a parallelogram are congruent Theorem 6.3: Consecutive angles in a parallelogram are supplementary. A D C B AD BC and AB DC <A <C and <B <D m<A+m<B = 180° m <B+m<C = 180° m<C+m<D = 180° m<D+m<A = 180°

Parallelograms (3):

Parallelograms (3) Diagonals of a figure : Segments that connect any to vertices of a polygon Theorem 6.4: The diagonals of a parallelogram bisect each other. A B C D

Parallelograms (4):

Parallelograms (4) Draw a parallelogram : ABCD on a piece of construction paper. Cut the parallelogram. Fold the paper and make a crease from A to C and from B to D. Fold the paper so A lies on C. What do you observe? Fold the paper so B lies on D. What do you observe? What theorem is confirmed by these Observations?

Tests for Parallelograms:

Tests for Parallelograms Theorem 6.5 : If both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram. Theorem 6.6: If both pairs of opposite angles of a quadrilateral are congruent, then the quadrilateral is a parallelogram. A D C B If AD BC and AB DC, then ABCD is a parallelogram If <A <C and <B <D, then ABCD is a parallelogram

Tests for Parallelograms 2:

Tests for Parallelograms 2 Theorem 6.7 : If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram A D C B Theorem 6.8: If one pair of opposite sides of a quadrilateral is both parallel and congruent, then the quadrilateral is a parallelogram.

A quadrilateral is a parallelogram if...:

A quadrilateral is a parallelogram if... Diagonals bisect each other. (Theorem 6.7) A pair of opposite sides is both parallel and congruent. (Theorem 6.8) Both pairs of opposite sides are congruent. ( Theorem 6.5) Both pairs of opposite angles are congruent. (Theorem 6.6) Both pairs of opposite sides are parallel. ( Definition)

Area of a parallelogram:

Area of a parallelogram If a parallelogram has an area of A square units, a base of b units and a height of h units, then A = bh. (Do example 1 p. 530) The area of a region is the sum of the areas of all its non-overlapping parts . (Do example 3 p. 531) b h

Rectangles:

Rectangles A rectangle is a quadrilateral with four right angles. Theorem 6-9 : If a parallelogram is a rectangle, then its diagonals are congruent . Opp. angles in rectangles are congruent (they are right angles) therefore rectangles are parallelograms with all their properties. Theorem 6-10 : If the diagonals of a parallelogrma are congruent then the parallelogram is a rectangle .

Rectangles (2):

Rectangles (2) If a quadrilateral is a rectangle, then the following properties hold true: Opp. Sides are congruent and parallel Opp. Angles are congruent Consecutive angles are supplementary Diagonals are congruent and bisect each other All four angles are right angles

Squares and Rhombi:

Squares and Rhombi A rhombus is a quadrilateral with four congruent sides. Since opp. sides are , a rhombus is a parallelogram with all its properties. Special facts about rhombi Theorem 6.11 : The diagonals of a rhombus are perpendicular. Theorem 6.12: If the diagonals of a parallelogram are perpendicular, then the parallelogram is a rhombus. Theorem 6.13: Each diagonal of a rhombus bisects a pair of opp. angles C

Squares and Rhombi(2):

Squares and Rhombi(2) If a quadrilateral is both, a rhombus and a rectangle, is a square If a rhombus has an area of A square units and diagonals of d 1 and d 2 units, then A = ½ d 1 d 2 .

Area of a triangle::

Area of a triangle: If a triangle has an area of A square units a base of b units and corresponding height of h units, then A = ½bh. h b Congruent figures have equal areas.

Trapezoids:

Trapezoids A trapezoid is a quadrilateral with exactly one pair of parallel sides. The parallel sides are called bases . The nonparallel sides are called legs . At each side of a base there is a pair of base angles . C

Trapezoids (2):

Trapezoids (2) C A C D B AB = base CD = base AC = leg BD = leg AB CD AC & BD are non parallel <A & <B = pair of base angles <C & <D = pair of base angles

Trapezoids (3):

Trapezoids (3) Isosceles trapezoid : A trapezoid with congruent legs. Theorem 6-14 : Both pairs of base angles of an isosceles trapezoid are congruent. Theorem 6-15 : The diagonals of an isosceles trapezoid are congruent.

Trapezoids (4):

Trapezoids (4) C A C D B The median of a trapezoid is the segment that joints the midpoints of the legs (PQ). Q P Theorem 6-16: The median of a trapezoid is parallel to the bases, and its measure is one-half the sum of the measures of its bases.

Area of Trapezoids:

Area of Trapezoids C A C D B Area of a trapezoid : If a trapezoid has an area of A square units, bases of b 1 and b 2 units and height of h units, then A = ½(b 1 + b 2 )h. h

You do not have the permission to view this presentation. In order to view it, please
contact the author of the presentation.

Send to Blogs and Networks

Processing ....

Premium member

Use HTTPs

HTTPS (Hypertext Transfer Protocol Secure) is a protocol used by Web servers to transfer and display Web content securely. Most web browsers block content or generate a “mixed content” warning when users access web pages via HTTPS that contain embedded content loaded via HTTP. To prevent users from facing this, Use HTTPS option.