gelombang 20berjalan

Views:
 
Category: Entertainment
     
 

Presentation Description

No description available.

Comments

Presentation Transcript

Gelombang : 

Gelombang WAVE

Slide 2: 

After learning this chapter, you are expected to be able to : Describe the definition of wave Show and describe the difference of transversal wave and longitudinal wave Describe the travelling wave Use the equation of travelling wave to solve problem

Slide 3: 

Keywords Amplitude = amplitudo Frequency = frekuensi Wavelength = panjang gelombang Wave velocity = cepat rambat gelombang Period = periode Wave = gelombang Travelling wave = gelombang berjalan Stationary wave = gelombang stationer

Case: : 

Case: Part of tree float on the sea can earn until coastal periphery. Ranting pohon yang terapung ditengah laut dapat sampai dipinggir pantai. Question: Siapa yang membawa ranting tersebut ke tepi pantai?

Simple experiment : 

Simple experiment go to the pool put part of tree or leaf on one shares shaking down the water last perceive what is going on with leaf or part of tree what is part of tree or leaf migrate? Give explanation

Slide 6: 

From the case and the experiment, what the meaning with wave ? Gelombang adalah gangguan/usikan yang merambat Wave is perturbation/interferes propagation gelombang adalah energi yang merambat Wave is energy propagation Hanya gangguan, usikan dan energinya yang merambat tapi partikelnya tidak ikut berpindah

Slide 7: 

Transversal wave Longitudinal wave Travelling wave Stationary wave Mechanic wave Electromagnetic wave

Slide 8: 

The kind of wave based on the oscillation direction Jenis gelombang berdasarkan arah getarnya 1. Transverse wave Gelombang transversal Wave the oscillation direction is vertical to the propagation course Gelombang yang arah getarnya tegak lurus dengan arah perambatannya Ex : wave at string, water level wave, light wave Gelombang pada tali, gelombang permukaan air, gelombang cahaya

Slide 9: 

Transversal wave

Slide 10: 

2. Longitudinal wave Gelombang longitudinal Wave that the oscillation direction is undirectional to the propagation course Gelombang yang arah getarnya searah dengan arah perambatannya Ex : Sound wave, slinki wave Gelombang bunyi, gelombang pada slinki

Slide 12: 

The kind of wave based on amplitude : 1. Travelling wave Gelombang berjalan Jika sebuah batu dijatuhkan pada kolam yang diam maka pada permukaan air terjadi gelombang yang bergerak menjauhi pusat jatuhnya batu. Hal ini juga dapat diamati pada gelombang air laut yang bergelung-gelung. Ini menunjukkan bahwa gelombang berjalan.

Equation of travelling wavePersamaan gelombang berjalan : 

Equation of travelling wavePersamaan gelombang berjalan y = displacement (m or cm) simpangan A = amplitude (m or cm) = angular velocity (rad/s) kecepatan sudut f = frequency (Hz) k = wave number (cm-1 or m-1) = wavelength (m or cm) panjang gelombang

Slide 14: 

Example: Equation of travelling wave is If x and y in cm and t in second, determine : amplitude wavelength frequency wave velocity

Slide 15: 

solution amplitude frequency wavelength Wave velocity

additional: : 

additional: If one plus, one minus, wave propagation toward right If both plus or both minus, wave propagation toward left

Slide 17: 

Determine : propagation toward amplitude frequency period wavelength wave velocity phase angle at t=1 second and x=1 meter phase phase differences at x=2 m and x=1 m From these equation.

Slide 18: 

1. 2. 3. 4. 5. x and y in cm t in second

Slide 19: 

For stationer wave, mechanics wave and electromagnetic wave will be explanation at the next meeting

Slide 20: 

FINISH

Stationary Wave : 

Stationary Wave After learning this chapter, you are expected to be able to: Describe the difference between stationary wave for fastened end and for free end Use the equation of stationary wave for fastened end and for free end to solve problem

Slide 22: 

Keywords: Fastened end = ujung terikat Free end = ujung bebas Node = simpul Belly = perut Origin point = titik asal

The kind of wave based on amplitude: : 

The kind of wave based on amplitude: 1. Travelling wave Have been explained at last meeting 2. Stationary wave Stationary wave is the wave that occurs due to interference between the incidence wave and reflected wave. In a certain distances, there are node and belly Gelombang stationer merupakan gelombang yang terjadi karena interferensi antara gelombang datang dengan gelombang pantul. Pada jarak-jarak tertentu terdapat terdapat simpul dan perut

Slide 25: 

Fastened end Ujung terikat Free end Ujung bebas Amplitude of stationary wave

Slide 26: 

y = displacement (m or cm) simpangan A = amplitude of travelling wave (m or cm) = angular velocity (rad/s) kecepatan sudut f = frequency (Hz) k = wave number (cm-1 or m-1) = wavelength (m or cm) panjang gelombang

Slide 27: 

Fastened end Ujung terikat Free end Ujung bebas Simpul Perut Diukur dari ujung pemantul Perut atau simpul ke-1 berarti X1 jadi n=0 X=0 dimulai dari ujung pemantul

Slide 28: 

Example A piece of rope is that one of the fastened ends vibrated so the stationary wave is formed. If the stationary wave that is created in the rope owns 8 bellies, rope length 4 m, amplitude 10 cm, frequency 20 Hz, determine: Seutas tali yang salah satu ujungnya terikat digetarkan sehingga terbentuk gelombang stationer. Jika gelombang stationer yang terbentuk pada seutas tali tersebut mempunyai perut sebanyak 8 buah, panjang tali 4 m, amplitudo 10 cm, frekuensi 20 Hz. Tentukan: The velocity of wave Amplitude of travelling wave Amplitude of stationary wave Position of 3 belly and 4 node from fastened end

Slide 29: 

Evaluation Determine The velocity of wave Frequency and wavelength Amplitude of travelling wave Amplitude of stationary wave Position of 2 belly and 3 node from end From the equation: 1. 2. 3.

Slide 30: 

Thank You

The kind of wave based on medium: : 

The kind of wave based on medium: 1. Mechanic wave need medium for propagation Ex: sound wave 2. Electromagnetic wave don’t need medium for propagation Tidak memerlukan medium dalam perambatannya Ex: light wave

Sound Wave : 

Sound Wave After learning this chapter, you are expected to be able to: Measurement speed of sound Describe the occurrence of tone high level in the simple sound producing instrument (wire and organ pipe) Apply the doppler’s effect in daily life Apply intensity and level of sound intensity in daily life

Slide 33: 

Keywords: Sound = bunyi Source of sound = sumber bunyi Open organ pipe = pipa organa terbuka Closed organ pipe = pipa organa tertutup Wire = dawai String = senar Intensity = intensitas Sound level = taraf intensitas bunyi Tone = nada Doppler’s effect = efek doppler Beat = layangan

Slide 34: 

Three conditions so that sound can be heard: Tiga syarat agar bunyi dapat terdengar: 1. Source of sound Sumber bunyi 2. Medium 3. Hearer Pendengar Sound is resulted by vibrating object Bunyi dihasilkan oleh benda yang bergetar Sound medium can be air, liquid or solid Medium bunyi dapat berupa udara, zat cair maupun zat padat

Slide 35: 

Sound wave based on frequency: infrasonik audiosonik ultrasonik 20.000 Hz 20 Hz Gempa bumi Gunung meletus Gajah Jangkrik Anjing manusia Lumba-lumba Kucing kelelawar

sound velocitycepat rambat bunyi : 

sound velocitycepat rambat bunyi Solid Zat padat Liquid Zat cair Air Gas Vzat padat > Vzat cair > Vgas

Slide 37: 

With: V = cepat rambat (m/s) E = modulus Young (N/m2) B = modulus Bulk (N/m2) = massa jenis (kg/m3) = konstanta laplace R = tetapan umum gas (8,3 J/mol K) T = suhu (K) Mr = massa molekul relatif

Slide 38: 

Example Sound velocity in hydrogen gas at 250 K is 1350 m/s. if laplace constant for hydrogen and oksigen assumed equal, determine sound velocity in oxygen at 360 K. Kecepatan rambat bunyi dalam gas hidrogen pada suhu 250 K adalah 1350 m/s. Jika tetapan laplace untuk hidrogen dan oksigen dianggap sama, berapa cepat rambat bunyi dalam oksigen pada suhu 360 K. (405 m/s)

Slide 39: 

Sound velocity at wire/string Cepat rambat bunyi pada dawai/senar Melde experiment sonometer

Slide 40: 

F = string tension (N) gaya tegang tali (N) = mass/wire length massa jenis linear (kg/m)

example : 

example Wire as long as 2 m is result F tension. Count F if string mass 25 gram and velocity is 40 m/s. Seutas dawai yang panjangnya 2 m menghasilkan tegangan sebesar F. Hitung F jika massa dawai 25 gram dan cepat rambat 40 m/s. solution

Source of soundsumber bunyi : 

Source of soundsumber bunyi Wire/string Dawai/senar Base tone Nada dasar Up tone 1 Nada atas 1 Up tone 2 Nada atas 2 n=0, 1, 2,… Nada dasar n=0, nada atas 1 n=1, nada atas 2 n=2, dst

Slide 43: 

Example A string in 80 cm in length and 16 gram in mass fastened ends with 800 N in tension. How much are the second up tone frequency. Dawai yang panjangnya 80 cm dan massa 16 gram dijepit kedua ujungnya dan terentang tegang dengan tegangan 800 N. frekuensi nada atas kedua yang dihasilkan adalah … 125 Hz c. 250 Hz e. 375 Hz 150 Hz d. 300 Hz n=0, 1, 2, …

Slide 44: 

Flute, trumpet Seruling, terompet Whistle peluit

Slide 45: 

Open organ pipe Pipa organa ujung terbuka Base tone Nada dasar Up tone 1 Nada atas 1 n=0, 1, 2,… Nada dasar n=0, nada atas 1 n=1, nada atas 2 n=2, dst

Slide 46: 

Closd organ pipe Pipa organa ujung tertutup Base tone Nada dasar Up tone 1 Nada atas 1 n=0, 1, 2,… Nada dasar n=0, nada atas 1 n=1, nada atas 2 n=2, dst

Example : 

Example First up tone of open organ pipe that in 40 cm length has resonance with closed pipe. If at the time of resonance total node of both pipes is similar, length of closed organ pipe (in cm) is … Nada atas pipa organa terbuka yang panjangnya 40 cm beresonansi dengan pipa yang tertutup. Jika pada saat beresonansi jumlah simpul kedua pipa sama, panjang pipa organa tertutup (dalam cm) adalah … 20 c. 40 e. 60 30 d. 50

Intensity of sound waveintensitas gelombang bunyi : 

Intensity of sound waveintensitas gelombang bunyi Migrating wave energy is expressed in wave intensity Energi gelombang yang berpindah dinyatakan dalam intensitas bunyi P = wave power (watt) daya A = Plane width (m2) luas penampang

Sound intensity that human ear can receive between 10-12 W/m2 – 1 W/m2 : 

Sound intensity that human ear can receive between 10-12 W/m2 – 1 W/m2 10-12 W/m2 1 W/m2 Intensity of ear threshold Intensitas ambang pendengaran Intensity of feel threshold Intensitas ambang perasaan 1012

Sound intensity levelTaraf intensitas bunyi : 

Sound intensity levelTaraf intensitas bunyi r1 r2 1 sumber n sumber TI = sound intensity level (dB) taraf intensitas bunyi

Example : 

Example An intensity level of any sound source at 20 m is 120 dB. How much is sound intensity level at 1.000 m from the source. Taraf intensitas suatu sumber bunyi pada jarak 20 m adalah 120 dB. Berapa taraf intensitas bunyi pada jarak 1.000 m dari sumber bunyi

Doppler’s effectefek doppler : 

Doppler’s effectefek doppler Vp(+) jika P mendekati S Vp(-) jika P menjauhi S Vs(+) jika S menjauhi P Vs(-) jika S mendekati P

Slide 53: 

Example A train runs at 108 km/hour velocity leads to the station while ringing the whistle. The whistle sound is heard by a chief station at 600 Hz frequency. When the sound velocity in the air is 340 m/s, how much frequency is the train whistle. Kereta api bergerak dengan laju 108 km/jam menuju stasiun sambil membunyikan peluit. Bunyi peluit tersebut terdengar oleh kepala stasiun dengan frekuensi 600 Hz. Apabila laju suara di udara 340 m/s, berapa frekuensi peluit kereta api tersebut.

Slide 54: 

Thanks for your attention

authorStream Live Help