ENERG�A GEOT�RMICA

Views:
 
Category: Education
     
 

Presentation Description

No description available.

Comments

Presentation Transcript

ENERGÍA GEOTÉRMICA : 

ENERGÍA GEOTÉRMICA

En los últimos años se han comenzado a desarrollar nuevas formas de obtener energías tales como la energía geotérmica: : 

En los últimos años se han comenzado a desarrollar nuevas formas de obtener energías tales como la energía geotérmica: La energía geotérmica es aquella energía que puede ser obtenida por el hombre mediante el aprovechamiento del calor del interior de la Tierra. El calor del interior de la Tierra se debe a varios factores: El gradiente geotérmico El calor radiogénico etc.

Hay distintos tipos de energías geotérmicas: : 

Hay distintos tipos de energías geotérmicas: Se obtiene energía geotérmica por extracción del calor interno de la Tierra. En áreas de aguas termales muy calientes a poca profundidad, se perfora por fracturas. El agua caliente o el vapor pueden fluir naturalmente, por bombeo o por impulsos de flujos de agua y de vapor. En Inglaterra, el "Proyecto de Piedras Calientes HDR“ fue abandonado después de comprobar su inviabilidad económica en 1989. Los programas HDR se están desarrollando en Australia, Francia, Suiza, Alemania. Los recursos de magma (rocas fundidas) ofrecen energía geotérmica de altísima temperatura, pero con la tecnología existente no se pueden aprovechar económicamente esas fuentes.

En la mayoría de los casos la explotación debe hacerse con dos pozos, de modo que por uno se obtiene el agua caliente y por otro se vuelve a reinyectar en el acuífero, tras haber enfriado el caudal obtenido. Las ventajas de este sistema son varias: : 

En la mayoría de los casos la explotación debe hacerse con dos pozos, de modo que por uno se obtiene el agua caliente y por otro se vuelve a reinyectar en el acuífero, tras haber enfriado el caudal obtenido. Las ventajas de este sistema son varias: Hay menos probabilidades de agotar el yacimiento térmico, ya que el agua reinyectada retiene aún una importante cantidad de energía térmica. Tampoco se agota el agua del yacimiento, porque la cantidad total se mantiene. Las posibles sales o emisiones de gases disueltos en el agua no se manifiestan al circular en circuito cerrado por las conducciones, lo que evita contaminaciones.

Hay distintos tipos de yacimientos geotérmicos según la temperatura del agua : 

Hay distintos tipos de yacimientos geotérmicos según la temperatura del agua Energía geotérmica de alta temperatura: existe en las zonas activas de la corteza. La temperatura está comprendida entre 150 y 400 °C, se produce vapor en la superficie y mediante una turbina, genera electricidad. Condiciones para que se dé la posibilidad de existencia de un campo geotérmico: una capa superior compuesta por una cobertura de rocas impermeables; un acuífero, o depósito, de permeabilidad elevada, entre 0,3 y 2 km de profundidad; suelo fracturado que permite una circulación de fluidos por convección, y por lo tanto la trasferencia de calor de la fuente a la superficie, y una fuente de calor magmático, entre 3 y 15 km de profundidad, a 500-600 °C. La explotación de un campo de estas características se hace por medio de perforaciones según técnicas casi idénticas a las de la extracción del petróleo. Energía geotérmica de temperaturas medias: aquella en que los fluidos de los acuíferos están a temperaturas menos elevadas, normalmente entre 70 y 150 °C. Por consiguiente, la conversión vapor-electricidad se realiza con un rendimiento menor, y debe explotarse por medio de un fluido volátil. Estas fuentes permiten explotar pequeñas centrales eléctricas, pero el mejor aprovechamiento puede hacerse mediante sistemas urbanos reparto de calor para su uso en calefacción y en refrigeración (mediante máquinas de absorción) Energía geotérmica de baja temperatura: es aprovechable en zonas más amplias que las anteriores; por ejemplo, en todas las cuencas sedimentarias. Es debida al gradiente geotérmico. Los fluidos están a temperaturas de 50 a 70 °C. Energía geotérmica de muy baja temperatura: se considera cuando los fluidos se calientan a temperaturas comprendidas entre 20 y 50 °C. Esta energía se utiliza para necesidades domésticas, urbanas o agrícolas.

Pero esta energía, como casi todas, tiene un impacto ambiental: : 

Pero esta energía, como casi todas, tiene un impacto ambiental: La construcción de caminos de acceso puede ocasionar la destrucción de bosques o áreas naturales, mientras que el emprendimiento en sí mismo puede ocasionar disturbios en el ecosistema local, por ejemplo: ruidos, polvos, humos, y también, en algunas zonas, puede causar erosión del suelo, la que deriva a largo plazo en desertización. El ruido se ocasiona durante la fase de exploración, construcción y producción. Muchas veces los niveles pueden traspasar el umbral del dolor. En el mismo emplazamiento, los trabajadores deben estar protegidos con elementos personales de protección auditiva. También se pueden instalar silenciadores adecuados en las maquinarias. Los ruidos en los alrededores del emplazamiento pueden ser reducidos restringiendo las operaciones ruidosas a las horas diurnas, también se pueden construir barreras absorbentes de sonido, como son las barreras de árboles. Durante condiciones normales de operación, debería ser posible mantener los niveles de ruido tan bajos que a una distancia de 1 kilómetro, el ruido no debería poder ser distinguido de otros ruidos de fondo.

Slide 8: 

Emisiones Gaseosas Los gases no condensables, acarreados por el vapor geotérmico, deben ser liberados a la atmósfera (dependiendo de qué tipo de planta de generación es utilizada). Estos están compuestos principalmente por: dióxido de carbono y sulfuros de hidrógeno, con trazas de amoníaco, hidrógeno, nitrógeno, metano, radón y algunas especies volátiles como boro, arsénico y mercurio. El sulfuro de hidrógeno causa molestias por el desagradable olor que ocasiona, a altas concentraciones puede dañar el sistema respiratorio y a mayores llega a ser fatal. Estas emisiones pueden ser reducidas usando tecnologías conocidas y disponibles de disminución de esta familia de gases. Por su parte, el amoníaco es irritante y el radón es carcinógeno por inhalación, pero las emisiones normalmente son bajas y no causan problemas. Las emisiones de boro y mercurio son normalmente tan bajas que no constituyen un riesgo a la salud. Igualmente estos metales pueden depositarse en los suelos y si se transportan por escurrimiento desde allí pueden contribuir a la contaminación de las aguas subterráneas y a las superficiales.

Slide 9: 

Contaminación de los cursos de agua superficiales Los problemas de contaminación pueden provenir de la disposición en la superficie de fluidos geotérmicos, los que contienen un amplio rango de iones (sodio, potasio, calcio, flúor, magnesio, silicatos, iodatos, antimonio, estroncio, bicarbonato, etc). Los que causan mayor preocupación son los químicos de mayor toxicidad como ser: boro, litio, arsénico, sulfuro de hidrógeno, mercurio, rubidio y amoníaco. La mayoría de ellos se diluyen y permanecen en solución en el agua por lo que pueden ingresar en la vegetación acuática y de allí pasar a los peces. Los más pesados caerán y terminarán en los sedimentos del lecho del cuerpo de agua, es peligroso que se acumulen por mucho tiempo se acumulen hasta alcanzar altas concentraciones. Los sistemas de tratamiento de efluentes suelen ser bastante caros, por lo que pocas veces son utilizados para remover los minerales del efluente. Los impactos de la descarga del agua residual pueden ser mitigados a través de la colecta y de la re inyección de esta en el sistema.

Slide 10: 

Contaminación del suelo y de las aguas subterráneas La contaminación de las primeras capas de agua subterránea puede provenir de: Líquidos utilizados en la etapa de perforación Infiltraciones por orificios en las paredes del pozo en la etapa de re -inyección, las que hacen que el líquido contaminado escurra hacia las primeras napas de agua subterránea. Fallos en la impermeabilidad de las piletas de evaporación, y sus consecuentes infiltraciones Todas estas situaciones problemáticas pueden ser evitadas, con diseños de planta apropiados y con monitoreos periódicos de las napas subterráneas. Es importante trabajar con controles de calidad principalmente en la etapa de perforación y construcción.

Slide 11: 

Depresión del acuífero Los niveles de agua subterránea pueden ser deprimidos bajo, principalmente en plantas de aprovechamiento de energía geotérmica que trabajan altas temperaturas. Estas situaciones pueden ser evitadas controlando y manteniendo la presión de las reservas de agua. Los niveles de agua también pueden disminuir como consecuencia de rupturas en las paredes de pozos en desuso, esta situación se puede prevenir, monitoreando el estado de estos pozos y reparándolos rápidamente ante cualquier problema. Hundimiento o subsidencia del terreno En los emprendimiento geotérmicos, los fluidos geotérmicos son retirados de los acuíferos a una tasa mayor que la entrada natural de líquido hacia el mismo. Esto puede compactar las formaciones rocosas en el lugar llevando a el hundimiento del terreno. Hay muy poco para hacer al respecto, lo único que se puede hacer para evitar estos efectos es mantener la presión del acuífero.

Slide 12: 

Uso del suelo Las plantas de aprovechamiento de la energía geotérmica deben ser construidas sobre sitios específicos. En caso de que estos sitios también tengan alto valor paisajístico, las estructuras que están sobre tierra pueden causar impacto visual. Es positivo que el aprovechamiento de la energía geotérmica, a su vez permite que en el mismo terreno donde se encuentran estos emprendimientos se desarrollen otros usos del suelo diferentes. La superficie utilizada puede ser menor en el caso de que se utilicen técnicas de perforación direccional.

Impacto visual : 

Impacto visual Las plantas de aprovechamiento de la energía geotérmica, suelen pasar casi desapercibidas en el terreno. Lo que ocurre es que muchas veces su impacto visual es significativo porque los sitios de alto valor geotérmico se suelen superponer en el espacio a sitios de gran valor natural y paisajístico. También pueden contener atracciones turísticas como ser géisers y zonas de piletas naturales con aguas termales. La fase de explotación de estos emprendimientos de aprovechamiento de la energía de la tierra hace que la presión del acuífero decline por lo que las atracciones antes mencionadas pierden caudal y los turistas acuden en menor número a estas zonas

España, como país que apuesta por las energías renovables, trata de aprovechar esta energía. : 

España, como país que apuesta por las energías renovables, trata de aprovechar esta energía. La investigación de los recursos geotérmicos en España por parte del Instituto Geológico y Minero de España (IGME), se inició en los setenta, mediante la realización del Inventario General de Manifestaciones Geotérmicas en el que se llevó a cabo un reconocimiento general, geológico y geoquímico, de los indicios termales existentes en todo su territorio. Posteriormente, se realizó una selección de las áreas de mayor interés geotérmico, basada en criterios geológicos y en el resultado del reconocimiento antes citado. Cada una de las áreas seleccionadas han sido investigadas, en mayor o menor intensidad dependiendo de su potencial geotérmico, a lo largo de las décadas posteriores mediante la realización de Estudios de detalle, utilizando para ello técnicas geológicas, geofísicas, geoquímicas, etc. Finalmente, mediante perforaciones profundas, ha sido posible evaluar el potencial geotérmico de las áreas más importantes que se sitúan en el sureste (Granada, Almería y Murcia), en el nordeste (Barcelona, Gerona y Tarragona), en el noroeste (Orense, Pontevedra y Lugo) y en el centro de la península ibérica (Madrid). Otras áreas de menor entidad situadas en Albacete, Lérida, León, Burgos y Mallorca también han sido investigadas.

Slide 15: 

En todos estos casos los recursos geotérmicos evaluados son de baja temperatura, 50-90 ºC. El único área con posibilidades de existencia de yacimientos de alta temperatura se localiza en el archipiélago volcánico de las Islas Canarias. Recursos de roca caliente seca muy superficial han sido evaluados en las islas de Lanzarote y La Palma. En la isla de Tenerife se ha investigado la existencia de posibles yacimientos de alta temperatura, no habiéndose encontrado almacenes geotérmicos explotables comercialmente. Los yacimientos geotérmicos de baja temperatura son actualmente explotados de forma sólo parcial y en pequeña intensidad. Así, se utiliza energía geotérmica para calefacción y suministro de agua caliente en edificios de balnearios en Lugo, Arnedillo (Rioja), Fitero (Navarra), Montbrió del Camp (Tarragona), Archena (Murcia) y Sierra Alhamilla (Almería). En Orense y Lérida se utiliza energía geotérmica para calefacción de otros tipos de edificios (viviendas, colegios). La aplicación para calefacción de recintos agrícolas (invernaderos) se ha desarrollado también en puntos de Montbrió del Camp (Tarragona), Cartagena y Mazarrón (Murcia) y Zújar (Granada) con una superficie total superior a 100.000 m2.

Slide 18: 

Sin embargo, en España no es la fuente de energía principal, sólo una en desarrollo. En renovables, la superan la eólica y la solar.

authorStream Live Help