chaptitre6 Etat cristallin ldb

Views:
 
Category: Entertainment
     
 

Presentation Description

No description available.

Comments

Presentation Transcript

PHYSICO-CHIMIEdes MATERIAUX : 

PHYSICO-CHIMIEdes MATERIAUX Bruno Toulouse 2008-2009 09/05/2009 1 Louis de Broglie

L’ETAT CRISTALLIN : 

L’ETAT CRISTALLIN 1 – La structure cristalline 2 – Les indices de Miller 3 – Les directions 4 – La détermination des structures 09/05/2009 2 Louis de Broglie

1 – La structure cristalline : 

1 – La structure cristalline La maille cristalline contient le motif Ses dimensions a, b, c dans les 3 directions sont les paramètres de maille Plan réticulaire plan passant par 3 nœuds Rangée réticulaire droite passant par 2 noeuds 09/05/2009 Louis de Broglie 3

1 – La structure cristalline : 

1 – La structure cristalline La maille simple contient tous les éléments de symétrie du réseau Les 14 réseaux spatiaux sont répartis en 7 systèmes cristallins 09/05/2009 Louis de Broglie 4

1 – La structure cristalline : 

1 – La structure cristalline 09/05/2009 Louis de Broglie 5

2 – Les indices de Miller : 

2 – Les indices de Miller La position d’un nœud est spécifié en indiquant sa position par rapport à un nœud du réseau choisi arbitrairement comme origine. On exprime les coordonnées à l’aide De 3 vecteurs a, b, c définissant Le réseau pris comme unité 09/05/2009 Louis de Broglie 6

2 – Les indices de Miller : 

2 – Les indices de Miller Un nœud ayant la côte (p, q, r) aura pour coordonnées x=pa, y=qb, z=rc Pour un réseau hexagonal on prend parfois 4 Vecteurs a1, a2, a3 et c 09/05/2009 Louis de Broglie 7

2 – Les indices de Miller : 

2 – Les indices de Miller Pour indexer un plan réticulaire, on utilise généralement les indices de Miller Un plan réticulaire coupe les axes en X=Aa, Y=Bb et Z=Cc. Les indices de Miller h,k,l s’obtiennent en prenant les inverses de A,B,C et en multipliant par n pour que h,k,l soient des entiers le plus petit possible h=n/A, k=n/B, l=n/C 09/05/2009 Louis de Broglie 8

2 – Les indices de Miller : 

2 – Les indices de Miller A partir d’un nœud choisit comme origine On compte le nombre de plans parallèles rencontrés sur la distance a séparant 2 nœuds du réseau; Ce nombre est égal à la valeur absolue de l’indice de Miller h suivant la direction x. On procède de manière identique pour les deux directions y et z qui permettent alors de déterminer k et l 09/05/2009 Louis de Broglie 9

2 – Les indices de Miller : 

2 – Les indices de Miller Exemple pour des plans parallèles à l’axe z Les plans réticulaires peuvent rencontrer les axes dans leur partie négative alors l’indice est négatif Il se note 09/05/2009 Louis de Broglie 10

2 – Les indices de Miller : 

2 – Les indices de Miller Dans le cas des réseaux hexagonaux On utilise de préférence les indices de Miller-Bravais On introduit dans le plan a1,a2 un troisième vecteur a3 et un indice supplémentaire i i dépend de de h et k h+k+i=0 Les indices de Miller Bravais (h,k,i,l) 09/05/2009 Louis de Broglie 11

3 – Les directions cristallines : 

3 – Les directions cristallines Soit un vecteur Le vecteur définit la même direction Les notations de la direction seront u,v,w obtenus en divisant les coordonnées A,B,C par un nombre n n choisi pour que u,v,w soient des entiers le plus petit possible On note [u,v,w] 09/05/2009 Louis de Broglie 12

4 – La détermination des structures : 

4 – La détermination des structures Pour « voir » les atomes il faut utiliser des rayonnements qui ont des longueurs d’onde voisines ou inférieures à la distance interatomique. Lorsqu’une onde électromagnétique rencontre un atome, ce sont les électrons entourant cet atome qui entrent en oscillation et chaque atome peut être considéré comme le centre d’une onde électromagnétique sphérique dont l’intensité est proportionnelle au nombre d’électrons de l’atome. Il y aura interférences 09/05/2009 Louis de Broglie 13

4 – La détermination des structures : 

4 – La détermination des structures L’intensité sera maximum pour un angle ? satisfaisant à la loi de BRAGG n?=2dhklsin? =la différence de marche 09/05/2009 Louis de Broglie 14

authorStream Live Help