meaning

Views:
 
Category: Entertainment
     
 

Presentation Description

No description available.

Comments

Presentation Transcript

Slide1: 

Semantics: Representations and Analyses

What kinds of meaning do we want to capture?: 

What kinds of meaning do we want to capture? Categories/entities IBM, Jane, a black cat, Pres. Bush Events running a mile, AS elected governor of CA Time Oct 30, next week, in 2 years Aspect Jack knows how to run. Jack is running. Jack ran the mile in 5 min. Beliefs, Desires and Intentions (BDI)

What Can Serve as a Meaning Representation?: 

What Can Serve as a Meaning Representation? Anything that allows us to Answer questions (What is the tallest building in the world?) Determine truth (Is the blue block on the red block?) Draw inferences (If the blue block is on the red block and the red block is on the tallest building in the world, then the blue block is on the tallest building in the world)

Meaning Representations: 

Meaning Representations All represent ‘linguistic meaning’ of I have a car and state of affairs in some world All consist of structures, composed of symbols representing objects and relations among them FOPC: Semantic Net: having haver had-thing speaker car

Slide5: 

Conceptual Dependency Diagram: Car  Poss-By Speaker Frame Having Haver: S HadThing: Car

A Standard Representation: Predicate-Argument Structure: 

A Standard Representation: Predicate-Argument Structure Represents concepts and relationships among them Nouns as concepts or arguments (red(ball)) Adjectives, adverbs, verbs as predicates (red(ball)) Subcategorization (or, argument) frames specify number, position, and syntactic category of arguments NP likes NP NP likes Inf-VP NP likes NP Inf-VP

Semantic (Thematic) Roles: 

Semantic (Thematic) Roles Subcat frames link arguments in surface structure with their semantic roles Agent: George hit Bill. Bill was hit by George. Patient: George hit Bill. Bill was hit by George. Selectional Restrictions: constraints on the types of arguments verbs take George assassinated the senator. *The spider assassinated the fly. assassinate: intentional (political?) killing

First Order Predicate Calculus: 

First Order Predicate Calculus Not ideal as a meaning representation and doesn't do everything we want -- but better than many… Supports the determination of truth Supports compositionality of meaning Supports question-answering (via variables) Supports inference

NL Mapping to FOPC : 

NL Mapping to FOPC Terms: constants, functions, variables Constants: objects in the world, e.g. Huey Functions: concepts, e.g. sisterof(Huey) Variables: x, e.g. sisterof(x) Predicates: symbols that refer to relations that hold among objects in some domain or properties that hold of some object in a domain likes(Huey, kibble) cat(Huey)

Slide10: 

Logical connectives permit compositionality of meaning kibble(x)  likes(Huey,x) “Huey likes kibble” cat(Vera) ^ odd(Vera) “Vera is an odd cat” sleeping(Huey) v eating(Huey) “Huey either is sleeping or eating” Sentences in FOPC can be assigned truth values Atomic formulae are T or F based on their presence or absence in a DB (Closed World Assumption?) Composed meanings are inferred from DB and meaning of logical connectives

Slide11: 

cat(Huey) sibling(Huey,Vera) cat(Huey) ^ sibling(Huey,Vera)  cat(Vera) Limitations: Do ‘and’ and ‘or’ in natural language really mean ‘^’ and ‘v’? Mary got married and had a baby. And then… Your money or your life! Does ‘’ mean ‘if’? If you go, I’ll meet you there. How do we represent other connectives? She was happy but ignorant.

Slide12: 

Quantifiers: Existential quantification: There is a unicorn in my garden. Some unicorn is in my garden. Universal quantification: The unicorn is a mythical beast. Unicorns are mythical beasts. Many? A few? Several? A couple?

Temporal Representations: 

Temporal Representations How do we represent time and temporal relationships between events? It seems only yesterday that Martha Stewart was in prison but now she has a popular TV show. There is no justice. Where do we get temporal information? Verb tense Temporal expressions Sequence of presentation Linear representations: Reichenbach ‘47

Slide14: 

Utterance time (U): when the utterance occurs Reference time (R): the temporal point-of-view of the utterance Event time (E): when events described in the utterance occur George is eating a sandwich. -- E,R,U  George had eaten a sandwich (when he realized…) E – R – U  George will eat a sandwich. --U,R – E  While George was eating a sandwich, his mother arrived.

Verbs and Event Types: Aspect: 

Verbs and Event Types: Aspect Statives: states or properties of objects at a particular point in time I am hungry. Activities: events with no clear endpoint I am eating. Accomplishments: events with durations and endpoints that result in some change of state I ate dinner. Achievements: events that change state but have no particular duration – they occur in an instant I got the bill.

Beliefs, Desires and Intentions: 

Beliefs, Desires and Intentions Very hard to represent internal speaker states like believing, knowing, wanting, assuming, imagining Not well modeled by a simple DB lookup approach so.. Truth in the world vs. truth in some possible world George imagined that he could dance. George believed that he could dance. Augment FOPC with special modal operators that take logical formulae as arguments, e.g. believe, know

Slide17: 

Believes(George, dance(George)) Knows(Bill,Believes(George,dance(George))) Mutual belief: I believe you believe I believe…. Practical importance: modeling belief in dialogue Clark’s grounding

Sum: 

Sum Many hard problems in full semantic representation: Temporal relations: tense, aspect BDI Current representations impoverished in many respects Next time: Read Ch 15:1-4,6

authorStream Live Help