lecture 7 deadlock


Presentation Description

No description available.


By: abmankumare (114 month(s) ago)


By: aheeed (118 month(s) ago)

can i download this ppt ??

By: kamran39 (126 month(s) ago)

i want this ppt

By: geetukkr (128 month(s) ago)

i want this ppt

By: vmdhartec (134 month(s) ago)

this is nice ppt

By: vishnooo (133 month(s) ago)

yes its a nice ppt. i want this ppt

See all

Presentation Transcript


Deadlocks Chapter 3 TOPICS Resource Deadlocks The ostrich algorithm Deadlock detection and recovery Deadlock prevention Deadlock avoidance Reference: Operating Systems Design and Implementation (Second Edition) by Andrew S. Tanenbaum, Albert S. Woodhull


Resources(1) Examples of computer resources printers tape drives Tables

Resources (2): 

Resources (2) Deadlocks occur when … processes are granted exclusive access to devices we refer to these devices generally as resources Preemptable resources can be taken away from a process with no ill effects Example: process swapping form main memory Nonpreemptable resources will cause the process to fail if taken away Example: print request by more than one proceses

Resources (3): 

Resources (3) Sequence of events required to use a resource request the resource use the resource release the resource Must wait if request is denied requesting process may be blocked may fail with error code


Deadlocks Suppose a process holds resource A and requests resource B at same time another process holds B and requests A both are blocked and remain so

Deadlock Modeling: 

Deadlock Modeling Modeled with directed graphs resource R assigned to process A process B is requesting/waiting for resource S process C and D are in deadlock over resources T and U

Four Conditions for Deadlock: 

Four Conditions for Deadlock Four conditions must hold for there to be a deadlock: Mutual exclusion condition each resource assigned to 1 process or is available Hold and wait condition process holding resources can request additional No preemption condition previously granted resources cannot forcibly taken away Circular wait condition must be a circular chain of 2 or more processes each is waiting for resource held by next member of the chain

How deadlock occurs: 

A B C How deadlock occurs

How deadlock can be avoided: 

How deadlock can be avoided (o) (p) (q)

Strategy to Deal with Deadlock: 

Strategy to Deal with Deadlock Strategies for dealing with Deadlocks Just ignore the problem altogether Detection and recovery Prevention Negating one of the four necessary conditions of deadlock Dynamic avoidance Careful resource allocation

Strategy 1: The Ostrich Algorithm: 

Strategy 1: The Ostrich Algorithm Just ignore the problem Reasonable if deadlocks occur very rarely cost of prevention is high UNIX and Windows takes this approach It is a trade off between convenience correctness

Strategy 2: Detection and Recovery: 

Strategy 2: Detection and Recovery Method 1: Every time a resource is requested or released, the resource graph is updated, and a check is made to see if any cycle exist. If a cycle exists, one of the process is the cycle is killed. If this does not break the deadlock, another process is killed and so on until the cycle is broken Method2 Periodically check to see if there are any processes that have been continuously blocked for more than say 1 hour. Such processes are then killed

Strategy 3: Deadlock Preventiona) Attacking the Mutual Exclusion Condition: 

Strategy 3: Deadlock Prevention a) Attacking the Mutual Exclusion Condition Some devices (such as printer) can be spooled only the printer daemon uses printer resource thus deadlock for printer eliminated Not all devices can be spooled

b) Attacking the Hold and Wait Condition: 

b) Attacking the Hold and Wait Condition Require processes to request resources before starting A process is allowed to run if all resources it needed is available. Otherwise it will just wait. Problems May not know required resources at start of run Resource will not be used optimally Variation: process must give up all resources and then request all immediately needed

c) Attacking the No Preemption Condition: 

c) Attacking the No Preemption Condition This is not a viable option Consider a process given the printer halfway through its job now forcibly take away printer !!??

d) Attacking the Circular Wait Condition: 

d) Attacking the Circular Wait Condition Numerically ordered resources Resource Graph A process may request 1st a printer, then tape dirve. But it may not request 1st a plotter, then a scanner. Resource graph can never have cycle.

Deadlock Prevention Summary: 

Deadlock Prevention Summary

Strategy 4: Deadlock Avoidance: 

Strategy 4: Deadlock Avoidance Carefully analyze each resource request to see if it can be safely granted. Need an algorithm that can always avoid deadlock by making right choice all the time. Banker’s algorithm (by Dijkstra)

Deadlock AvoidanceResource Trajectories: 

Deadlock Avoidance Resource Trajectories Two process resource trajectories

Safe and Unsafe States (1): 

Safe and Unsafe States (1) Demonstration that the state in (a) is safe (a) (b) (c) (d) (e)

Safe and Unsafe States (2): 

Safe and Unsafe States (2) (a) (b) (c) (d) unsafe safe safe safe

The Banker's Algorithm for a Single Resource: 

The Banker's Algorithm for a Single Resource Three resource allocation states (a) (b) (c) safe safe unsafe

Banker's Algorithm for Multiple Resources: 

Banker's Algorithm for Multiple Resources Example of banker's algorithm with multiple resources

authorStream Live Help