Reverse Causation and the Transactional Interpretation : Reverse Causation and the Transactional Interpretation John G. Cramer
Dept. of Physics, Univ. of Washington
Seattle, Washington 98195, USA AAAS Pacific Division: Frontiers of Time
USD, San Diego, CA, June 21, 2006 Quantum Mechanics
Outline of Talk: Outline of Talk About Quantum Interpretations
An introduction to the Transactional Interpretation of Quantum Mechanics
A new Retro-Causality Quantum Paradox (or how to send messages back in time by 50 ms)
A Quantum Metaphor: A Quantum Metaphor (With apologies to Indostanis with Disabilities)
The Blind Menand the Elephantby John Godfrey Saxe (1816-1887): The Blind Men and the Elephant by John Godfrey Saxe (1816-1887) It was six men of Indostan, To learning much inclined, Who went to see the Elephant,
(Though all of them were blind), That each by observation, Might satisfy his mind. .
The First approached the Elephant, And happening to fall, Against his broad and sturdy side, At once began to bawl:
“God bless me! but the Elephant, Is very like a wall!”
The Second, feeling of the tusk, Cried, “Ho! what have we here, So very round and smooth and sharp? To me ’tis mighty clear,
This wonder of an Elephant, Is very like a spear!”
The Third approached the animal, And happening to take, The squirming trunk within his hands, Thus boldly up and spake:
“I see,” quoth he, “the Elephant, Is very like a snake!”
The Fourth reached out an eager hand, And felt about the knee. “What most this wondrous beast is like, Is mighty plain,” quoth he;
“ ‘Tis clear enough the Elephant, Is very like a tree!”
The Fifth, who chanced to touch the ear, Said: “E’en the blindest man, Can tell what this resembles most; Deny the fact who can,
This marvel of an Elephant, Is very like a fan!”
The Sixth no sooner had begun, About the beast to grope, Than, seizing on the swinging tail, That fell within his scope,
I see,” quoth he, “the Elephant, Is very like a rope!”
And so these men of Indostan, Disputed loud and long, Each in his own opinion, Exceeding stiff and strong,
Though each was partly in the right, And all were in the wrong!
Moral: So oft in theologic wars, The disputants, I ween, Rail on in utter ignorance, Of what each other mean,
And prate about an Elephant, Not one of them has seen! quantum interpretational discussions a quantum process
Quantum Theory andInterpretations: Quantum Theory and Interpretations
What is Quantum Mechanics?: What is Quantum Mechanics? Quantum mechanics is a theory. It is our current “standard model” for describing the behavior of matter and energy at the smallest scales (photons, atoms, nuclei, quarks, gluons, leptons, …).
Like all theories, it consists of a mathematical formalism, plus an interpretation of that formalism.
However, quantum mechanics differs from other physical theories because, while its formalism of has been accepted and used for 80 years, its interpretation remains a matter of controversy and debate. Like the opinions of the 6 blind men, there are many rival QM interpretations on the market (Copenhagen, Many-Worlds, …).
Today, however, we’ll consider only one QM interpretation, the Transactional Interpretation of quantum mechanics.
The Role of an Interpretation: The Role of an Interpretation An interpretation of a formalism should:
Provide links between the mathematical symbols of the formalism and elements of the physical world;
Neutralize the paradoxes; all of them; addressing only a few of the formalism’s interpretational problems is undesirable;
Provide tools for visualization, for speculation, and for extension. An interpretation should not have its own sub-formalism!
It should not make its own testable predictions, (but it may be falsifiable, if it is found to be inconsistent with the formalism and/or with experiment)!
Example: Newton’s 2nd Law: Example: Newton’s 2nd Law Formalism: What this interpretation does:
It relates the formalism to physical observables.
It avoids the paradoxes that would arise if m<0.
It insures that F||a. Interpretation: “The vector force F on a body is proportional to the product of its scalar mass m, which is positive, and the 2nd time derivative a of its vector position.”
The TransactionalInterpretationof QuantumMechanics: The Transactional Interpretation of Quantum Mechanics
“Listening” to the Quantum Mechanical Formalism: “Listening” to the Quantum Mechanical Formalism Consider a quantum matrix element:
<S> = òv y* S y dr3 = <f | S | i>
… a y* - y “sandwich”. What does this suggest? Hint: The complex conjugation in y* is the Wigner operator for time reversal. If y is a retarded wave, then y* is an advanced wave.
If y = A ei(kr - wt) then y* = A ei(-kr + wt)
(retarded) (advanced) A retarded wave carries positive energy to the future.
An advanced wave carries negative energy to the past.
Maxwell’s Electromagnetic Wave Equation (Classical): Maxwell’s Electromagnetic Wave Equation (Classical) Ñ2 Fi = 1/c2 ¶2Fi /¶t2
This is a 2nd order differential equation, which has two time solutions, retarded and advanced. Wheeler-Feynman Approach: Use ½ retarded and ½ advanced (time symmetry). Conventional Approach: Choose only the retarded solution (a “causality” boundary condition).
A Wheeler-Feynman Electromagnetic “Transaction”: A Wheeler-Feynman Electromagnetic “Transaction” The emitter sends retarded and advanced waves. It “offers” to transfer energy.
A Wheeler-Feynman Electromagnetic “Transaction”: A Wheeler-Feynman Electromagnetic “Transaction” The emitter sends retarded and advanced waves. It “offers” to transfer energy.
The absorber responds with an advanced wave that “confirms” the transaction. Absorber
A Wheeler-Feynman Electromagnetic “Transaction”: A Wheeler-Feynman Electromagnetic “Transaction” The emitter sends retarded and advanced waves. It “offers” to transfer energy.
The absorber responds with an advanced wave that “confirms” the transaction.
The loose ends cancel and disappear, and energy is transferred.
Overview of theTransactional Interpretation: Offer Wave:
The initial wave function y is interpreted as a retarded-wave offer to form a quantum event.
Confirmation wave:
The conjugate wave function y* is interpreted as an advanced-wave confirmation to proceed with the quantum event.
Transaction – the Quantum Handshake:
The many y y* combinations present in the QM formalism are interpreted as indicating the formation of a forward/back-in-time standing wave that transfers energy, momentum, and other conserved quantities.
No Observers:
Transactions involving observers are no different from other transactions; Observers and their knowledge play no special roles.
No Paradoxes: Transactions are intrinsically nonlocal, and all (?) paradoxes are resolved.
Few Postulates (Economical): Heisenberg’s uncertainty principle and Born’s statistical interpretation can be derived from the Transactional Interpretation. Overview of the Transactional Interpretation
The QuantumTransactional Model: We apply the same logic to QM:
Step 1: The emitter sends out an “offer wave” Y. The Quantum Transactional Model
The QuantumTransactional Model: We apply the same logic to QM:
Step 1: The emitter sends out an “offer wave” Y. Step 2: The absorber responds with a “confirmation wave” Y*. The Quantum Transactional Model
The QuantumTransactional Model: The Quantum Transactional Model We apply the same logic to QM:
Step 1: The emitter sends out an “offer wave” Y. Step 2: The absorber responds with a “confirmation wave” Y*. Step 3: The process repeats until energy and momentum is transferred and the transaction is completed (wave function collapse).
The TI and theUncertainty Principle: The TI and the Uncertainty Principle The completed transaction projects out only that part of the offer wave y that had been reinforced by the confirmation wave y* (=> measurement).
Consequently, the transaction can project out only one of two complementary variables.
This accounts for Heisenberg’s Uncertainty Principle.
The TI and theBorn Probability Law: The TI and the Born Probability Law Starting from E&M and the Wheeler-Feynman approach, the E-field “echo” that the emitter receives from the absorber is the product of the retarded-wave E-field at the absorber and the advanced-wave E-field at the emitter.
Translating this to quantum mechanical terms, the “echo” that the emitter receives from each potential absorber is yi yi*, leading to the Born Probability Law. Wave amplitude here is yy*
Role of the Observerin the TI: Role of the Observer in the TI l In the Copenhagen Interpretation, observers are given the special role as “Collapsers of Wave Functions”. This leads to problems, e.g., in quantum cosmology where no observers are presumably present.
l In the Transactional Interpretation, transactions involving an observer are the same as any other transactions.
l Thus, the observer-centric aspects of the Copenhagen Interpretation are avoided.
Can the TI be Tested?: Can the TI be Tested? The simple answer is “No!”. It is the formalism of quantum mechanics that makes all of the testable predictions.
As long as an interpretation like the TI is consistent with the formalism, it will make the same predictions as any other valid interpretation, and no experimental tests are possible.
However, an interpretations may be inconsistent with the quantum mechanical formalism and its predictions.
If this is true, then the interpretation can be falsified.
The Transactional Interpretation follows the quantum formalism very closely and does not appear to have problems in this area.
The TI and Some Quantum Paradoxes: The TI and Some Quantum Paradoxes
Paradox 1 (non-locality):Einstein’s Bubble: Paradox 1 (non-locality): Einstein’s Bubble Situation: A photon is emitted
from a source having no directional preference.
Paradox 1 (non-locality):Einstein’s Bubble: Paradox 1 (non-locality): Einstein’s Bubble Situation: A photon is emitted
from a source having no directional preference.
Its spherical wave function Y expands like an inflating bubble.
Paradox 1 (non-locality):Einstein’s Bubble: Paradox 1 (non-locality): Einstein’s Bubble Question: (originally asked by Albert Einstein)
If a photon is detected at Detector A, how does the photon’s wave function Y at the locations of Detectors B & C “know” that it should vanish? Situation: A photon is emitted
from a source having no directional preference.
Its spherical wave function Y expands like an inflating bubble.
It reaches Detector A, and the Y bubble “pops” and disappears.
Paradox 1 (non-locality):Einstein’s Bubble: It is as if one throws a beer bottle into Boston Harbor. It disappears, and its quantum ripples spread all over the Atlantic.
Then in Copenhagen, the beer bottle suddenly jumps onto the dock, and the ripples disappear everywhere else.
That’s what quantum mechanics says happens to electrons and photons when they move from place to place. Paradox 1 (non-locality): Einstein’s Bubble
Slide28: TI Explanation:
A transaction develops between the source and detector A, transferring the energy there and blocking any similar transfer to the other potential detectors, due to the 1-photon boundary condition.
The transactional handshakes acts nonlocally to answer Einstein’s question.
We will return to nonlocality, the EPR Paradox, and possible retro-causal implications later in the talk. Paradox 1 (non-locality): Einstein’s Bubble
Paradox 2 (wave/particle):Wheeler’s Delayed Choice: Paradox 2 (wave/particle): Wheeler’s Delayed Choice The observer waits until after the photon has passed the slits to decide which measurement to do. * * * A source emits one photon. Its wave function passes through slits 1 and 2, making interference beyond the slits.
The observer can choose to either: (a) measure the interference pattern at plane s1, requiring that the photon travels through both slits.
or (b) measure at which slit image it appears in plane s2, indicating that it has passed only through slit 2.
Paradox 2 (wave/particle):Wheeler’s Delayed Choice: Paradox 2 (wave/particle): Wheeler’s Delayed Choice Thus, in Wheeler’s account of the process, the photon does not “decide” if it is a particle or a wave until after it passes the slits, even though a particle must pass through only one slit while a wave must pass through both slits.
Wheeler asserts that the measurement choice determines whether the photon is a particle or a wave retroactively!
Slide31: Paradox 2 (wave/particle): Wheeler’s Delayed Choice TI Explanation:
If the screen at s1 is up, a transaction forms between s1 and the source and involves waves passing through both slits 1 and 2.
Slide32: Paradox 2 (wave/particle): Wheeler’s Delayed Choice TI Explanation:
If the screen at s1 is up, a transaction forms between s1 and the source and involves waves passing through both slits 1 and 2.
If the screen at s1 is down, a transaction forms between detectors 1’ or 2’ and the source S, and involves waves passing through only one slit.
Slide33: Paradox 2 (wave/particle): Wheeler’s Delayed Choice TI Explanation:
If the screen at s1 is up, a transaction forms between s1 and the source and involves waves passing through both slits 1 and 2.
If the screen at s1 is down, a transaction forms between detectors 1’ or 2’ and the source S, and involves waves passing through only one slit.
In either case, when the measurement decision was made is irrelevant.
Paradox 3 (interference):The Afshar Experiment: Paradox 3 (interference): The Afshar Experiment In a Delayed Choice setup, place wires with 6% opacity at the positions of the interference minima at s1;
Place detector at 2’ on plane s2 and observe the particles passing through slit 2.
Question: What fraction of the light is blocked by the grid and not transmitted to 2’? (i.e., is the interference pattern still there when one is measuring particle behavior?)
Paradox 3 (interference):The Afshar Experiment: Paradox 3 (interference): The Afshar Experiment Grid & 1 Slit
6% Loss Grid & 2 Slits
<0.1% Loss No Grid & 2 Slits
No Loss
Paradox 3 (interference):The Afshar Experiment: One open
Wire present Both open
No Wire Both open
Wire present Paradox 3 (interference): The Afshar Experiment
Paradox 3 (interference):The Afshar Experiment: Paradox 3 (interference): The Afshar Experiment Conclusions:
Interference is still present, even when an unambiguous Welcher-Weg (which-way) experiment is performed.
Measuring particle-like behavior does not suppress wave-like behavior, if careful non-interactive measurements are made.
It appears that light waves must pass both slits to create the interference, even when the photon passes through only one slit.
Slide38: TI Explanation: The initial offer waves pass through both slits on their way to possible absorbers. At the wires, the offer waves cancel in first order, so that no transactions can form and no photons can be intercepted by the wires.
Therefore, the absorption by the wires should be very small (<<6%) and consistent with what is observed. Paradox 3 (interference): The Afshar Experiment destructive
A new Retro-Causality Paradox (or how to send messages back in time by 50 ms): A new Retro-Causality Paradox (or how to send messages back in time by 50 ms)
Down-Conversion with LiIO3: Down-Conversion with LiIO3
Dopfer’s Position-MomentumEPR Experiment: Dopfer’s Position-Momentum EPR Experiment “Heisenberg” Lens
f = 86 cm LiIO3
Down-Conversion Crystal Double-Slit Detector D2 Double Slit System
a = 75 mm, d = 255 mm Coincidence Circuit Auxiliary
Lens UV Laser Beam Laser Beam Stop f 2f or “Heisenberg” Detector D1 f 2f Position Momentum 28.2o 28.2o Birgit Dopfer
PhD Thesis
U. Innsbruck, 1998.
Can EPR be used for Observer-to-Observer Communication?: Can EPR be used for Observer-to-Observer Communication? There are theorems in the literature (Eberhard, Shimony, …) showing that EPR nonlocal observer-to-observer communication is impossible.
Peacock and Hepburn have shown that these “proofs” are tautological and that certain key assumptions are inconsistent with aspects of the quantum formalism (e.g., BE symmetrization).
Therefore, the question remains “open” (at least a crack).
Cramer’s Retrocausal Dopfer Experiment: Slit Image
Plane Fiber-Optics Light Pipes
(n = 1.5) 2nd Object
Plane Transmitter 10 km 1st Object
Plane (Slits) “1” “0” Receiver (interference or no interference?) The signal arrives 50 ms before it is sent! “1” “0” k1 k0 k2 Cramer’s Retrocausal Dopfer Experiment Based on a suggestion
by Raymond Jensen
U. Notre Dame, 2006.
A Transactional Analysis ofthe Dopfer Experiment: A Transactional Analysis of the Dopfer Experiment D2 D1 LiIO3 Crystal Retro-causal Influence? From the point of view of the Transactional Interpretation, the nonlocal connection between detection events at D1 and D2 arises because the two transactions must share a “handshake” at the LiIO3 crystal, which can only be realized when the summed energies and momenta of the two photons equal that of the pump-laser photon that created them. Moreover, if a photon is detected when D2 is in the 2f position where the one of the slit is imaged, the advanced-wave confirmation can pass only through that slit, and no 2-slit interference is possible. On the other hand, , if a photon is detected when D2 is in the f position illuminated by both slits, the advanced-wave confirmation can pass through both slits and 2-slit interference is present.
No barrier to retro-causation is apparent in this TI analysis. k2 k1 Retarded Wave Advanced Wave Advanced Wave Retarded Wave f 2f
Conclusions: Conclusions The Transactional Interpretation provides a way of understanding the counter-intuitive aspects of quantum mechanics.
Its advance-retarded handshake provides a way of understanding the intrinsic nonlocality of quantum mechanics, while preserving the constraints of special relativity.
Among quantum interpretations, the TI is unusual in providing a graphic way of visualizing quantum processes (including quantum computing).
Analysis of the Dopfer Experiment with the Transactional Interpretation does not reveal any “show-stopper” that would prevent retrocausal signaling.
References: References Transactional “The Transactional Interpretation of Quantum Mechanics”, Reviews of Modern Physics 58, 647 (1986). Available at http://www.npl.washington.edu/TI or at the RMP web site.
“The Plane of the Present and the Transactional Paradigm of Time”, Chapter 9 of Time and the Instant, Robin Drurie, ed., Clinamen Press, UK (2001); ArXiv reprint: quant-ph/0507089
“Zwei Experimente zur Interferenz von Zwei-Photonen Zuständen”, Birgit Dopfer, PhD Thesis, U. Innsbruck (1998).
The PowerPoint version of this talk will soon be available at: http://faculty.washington.edu/jcramer
TheEnd: The End