nbi03 jim horn

Category: Entertainment

Presentation Description

No description available.


Presentation Transcript


NuMI Horn Construction and Testing At NBI’02 Just finishing testing of prototype horn Since NBI’02 Constructed and tested production horns 1 & 2 Will also mention Cross Hair Alignment System Remote survey rod Field Monitoring Bdot Coils Remote electrical connection, stripline flex test Decay Pipe Magnetic Field Check ANL has collaborated on horn testing and monitoring

NuMI Horn General Design Features: 

NuMI Horn General Design Features Parabolic shape gives “lens” focus (Bdl a radius) -- tunable momentum neutrino beam 205 kA peak current 3.0 Tesla peak field 2.6 milli-sec half-sine wave pulse 1.87 sec repetition rate Inner Conductor (nickel coated) Stripline connection pads are silver plated Drain Insulation Ring Spray Nozzle Outer Conductor (anodized) Rounded end-cap reduces stress riser Straight section outside beam equalizes current azimuthally Compression support spider centers inner conductor, flexes in beam direction Port for Bdot coil magnetic field monitor

Production Horn 1 is complete: 

Production Horn 1 is complete Horn remote stripline connection Horn remote lifting fixture Stripline flex section Cone to guide survey pole onto tooling ball Water drain tank Lift tables to remotely plug horn up onto module

Production Horn 2 is complete: 

Production Horn 2 is complete Water line electric break – rad-hard ceramic in compression “Cross Hair” precision check of horn position via beam scan scatter to ion chamber Magnetic field mapping Hall probe

Test Pulsing and problems found: 

Test Pulsing and problems found Prototype Horn 1: 10 million pulses ( 1 “NuMI year” ) described at NBI’02 Water drips at quick-disconnects, fixed by making water lines less stiff Flaking of nickel at nickel-to-anodize coating transition at inner conductor straight section (for production, nickel coat entire inner conductor, eliminate interface) Production Horn 1: 0.4 million pulses No problems found Production Horn 2: 0.4 million pulses No problems found Remote electrical clamp: 1.8 million pulses No problems found Flex joint at maximum flex: 0.2 million pulses No problems found Bdot field monitor upper prototype: 10 million pulses Temperature fluctuations at connector cause baseline drift – do baseline subtraction Bdot field monitor lower prototype: 0.2 million pulses Water collecting at lower feed-through becomes conducting – add drain line


Horn Field Measurement Main horn field between conductors of NuMI Production Horn 1 NuMI Horn 1 Measured September 2003 Field between conductors: a 1/R symmetrical and matches current better than 1% (Top) (LL) (LR)


Horn Field Measurement in ‘field-free’ region through center of horn For all three horns Prototype Horn 1 Production Horn 1 Production Horn 2 fringe field in “field-free” region down center of horn is small (~0.01 Tesla max.) Have not put this field in Monte Carlo yet; previous studies indicate effect on Far/Near neutrino flux ratio should be small Measurement with probe moving along horn axis Typical Scan (Aug. 2003)

Decay Pipe as Third Horn? (Shades of Hadron Hose!): 

Decay Pipe as Third Horn? (Shades of Hadron Hose!) Just a couple gauss will affect neutrino spectrum if field aligned along whole 675 m of decay pipe so measured field Oct. 2003

Measured Decay Pipe Magnetic Field is Negligible: 

Measured Decay Pipe Magnetic Field is Negligible Field measured is only 0.3 Gauss, fairly uniform

Stripline flex test: 

Stripline flex test Stripline flex region allows horn to move relative to remote clamp for: Remote motor controlled horn alignment Thermal expansion of stripline from beam and electrical heating 0.2 million horn pulses taken with stripline flexed to maximum specification 3mm horz. + 3mm vert. No problems found

Remote stripline clamp test: 

Remote stripline clamp test How to hook and unhook horn from power stripline remotely in radiation area? Shaft toggles clamp to provide pressure for good electrical connection Contact surfaces fine after two plug/unplug cycles 1.8 million pulses total

Cross Hair Horn Alignment System: 

Cross Hair Horn Alignment System Hole in shield to insert beam loss monitor Beam loss monitor ion chamber 12 mm x 1 mm Aluminum cross hairs mounted on horn ( 36 mm x 1 mm for horn 2 upstream) Function: Check position of horn w.r.t. beam by beam scan (target-out) Scan: (1) horn 1 neck (2) horn 1 downstream (3) horn 2 upstream (4) horn 2 downstream

Horn survey rod for cross check Tests give ~ 0.01” transverse accuracy: 

Horn survey rod for cross check Tests give ~ 0.01” transverse accuracy Sight on 3 nests Extrapolate through shielding to horn tooling ball Carbon fiber tube body (Primary survey points)

Bdot Coil Horn Magnetic Field Monitor: 

Bdot Coil Horn Magnetic Field Monitor Three bdot coil units per horn to monitor magnetic field each pulse First prototype: 8 turns of 0.01 inch diameter 304 stainless steel wire wrapped on MACOR form, 1.010 x 0.363 sq inch per turn mounted to Aluminum Oxide ceramic feedthrough Problems: MACOR was borderline for required radiation-hardness, but holes for coil were easy to produce Significant thermo-electric effects found at wire to pin solder joints, caused readout drift Puddling water at lower probe feed-through became conductive, affecting readout

Bdot field monitoring coil solutions: 

Bdot field monitoring coil solutions DC-baseline subtraction done each pulse to compensate thermo-electric effect When tested, three coils on horn agreed on field to 1% Water drain being added to lower feed-through - pipe to water drain tank Yt Partially Stabilized Zirconia: high impact resistance rad-hard insulator Manufacturer managed to produce 0.03” diameter holes for coil wire

Summary and outlook: 

Summary and outlook NuMI Horns constructed and pulse tested – look good! Next steps: Practice remote mounting of horns to modules (December/January 2003) Install in target hall (May/June 2004) Practice remote handling in target hall Commission with beam (December 2004)

authorStream Live Help