Chapter 03

Views:
 
Category: Entertainment
     
 

Presentation Description

No description available.

Comments

Presentation Transcript

Deadlocks: 

Deadlocks Chapter 3 3.1. Resource 3.2. Introduction to deadlocks 3.3. The ostrich algorithm 3.4. Deadlock detection and recovery 3.5. Deadlock avoidance 3.6. Deadlock prevention 3.7. Other issues

Agenda: 

Agenda 3.1. Resource 3.2. Introduction to deadlocks 3.3. The ostrich algorithm 3.4. Deadlock detection and recovery 3.5. Deadlock avoidance 3.6. Deadlock prevention 3.7. Other issues

Resources: 

Resources Examples of computer resources printers tape drives tables Processes need access to resources in reasonable order Suppose a process holds resource A and requests resource B at same time another process holds B and requests A both are blocked and remain so

Resources (1): 

Resources (1) Deadlocks occur when … processes are granted exclusive access to devices we refer to these devices generally as resources Preemptable resources can be taken away from a process with no ill effects Nonpreemptable resources will cause the process to fail if taken away

Resources (2): 

Resources (2) Sequence of events required to use a resource request the resource use the resource release the resource Must wait if request is denied requesting process may be blocked may fail with error code

Introduction to Deadlocks: 

Introduction to Deadlocks Formal definition : A set of processes is deadlocked if each process in the set is waiting for an event that only another process in the set can cause Usually the event is release of a currently held resource None of the processes can … run release resources be awakened

Four Conditions for Deadlock: 

Four Conditions for Deadlock Mutual exclusion condition each resource assigned to 1 process or is available Hold and wait condition process holding resources can request additional No preemption condition previously granted resources cannot forcibly taken away Circular wait condition must be a circular chain of 2 or more processes each is waiting for resource held by next member of the chain

Agenda: 

Agenda 3.1. Resource 3.2. Introduction to deadlocks 3.3. The ostrich algorithm 3.4. Deadlock detection and recovery 3.5. Deadlock avoidance 3.6. Deadlock prevention 3.7. Other issues

Deadlock Modeling (2): 

Deadlock Modeling (2) Modeled with directed graphs resource R assigned to process A process B is requesting/waiting for resource S process C and D are in deadlock over resources T and U

Deadlock Modeling (3): 

Deadlock Modeling (3) Strategies for dealing with Deadlocks just ignore the problem altogether detection and recovery dynamic avoidance careful resource allocation prevention negating one of the four necessary conditions

Deadlock Modeling (4): 

How deadlock occurs A B C Deadlock Modeling (4)

Deadlock Modeling (5): 

Deadlock Modeling (5) How deadlock can be avoided (o) (p) (q)

Agenda: 

Agenda 3.1. Resource 3.2. Introduction to deadlocks 3.3. The ostrich algorithm 3.4. Deadlock detection and recovery 3.5. Deadlock avoidance 3.6. Deadlock prevention 3.7. Other issues

The Ostrich Algorithm: 

The Ostrich Algorithm Pretend there is no problem Reasonable if deadlocks occur very rarely cost of prevention is high UNIX and Windows takes this approach It is a trade off between convenience correctness

Agenda: 

Agenda 3.1. Resource 3.2. Introduction to deadlocks 3.3. The ostrich algorithm 3.4. Deadlock detection and recovery 3.5. Deadlock avoidance 3.6. Deadlock prevention 3.7. Other issues

Detection with One Resource of Each Type: 

Detection with One Resource of Each Type Note the resource ownership and requests A cycle can be found within the graph, denoting deadlock

Detection with Multiple Resource of Each Type (1): 

Detection with Multiple Resource of Each Type (1) Data structures needed by deadlock detection algorithm

Detection with Muliple Resource of Each Type (2): 

Detection with Muliple Resource of Each Type (2) An example for the deadlock detection algorithm

Recovery from Deadlock (1): 

Recovery from Deadlock (1) Recovery through preemption take a resource from some other process depends on nature of the resource Recovery through rollback checkpoint a process periodically use this saved state restart the process if it is found deadlocked

Recovery from Deadlock (2): 

Recovery from Deadlock (2) Recovery through killing processes crudest but simplest way to break a deadlock kill one of the processes in the deadlock cycle the other processes get its resources choose process that can be rerun from the beginning

Agenda: 

Agenda 3.1. Resource 3.2. Introduction to deadlocks 3.3. The ostrich algorithm 3.4. Deadlock detection and recovery 3.5. Deadlock avoidance 3.6. Deadlock prevention 3.7. Other issues

Deadlock AvoidanceResource Trajectories: 

Deadlock Avoidance Resource Trajectories Two process resource trajectories

Safe and Unsafe States (1): 

Safe and Unsafe States (1) Demonstration that the state in (a) is safe (a) (b) (c) (d) (e)

Safe and Unsafe States (2): 

Safe and Unsafe States (2) Demonstration that the sate in b is not safe (a) (b) (c) (d)

The Banker's Algorithm for a Single Resource: 

The Banker's Algorithm for a Single Resource Three resource allocation states safe safe unsafe (a) (b) (c)

Banker's Algorithm for Multiple Resources: 

Banker's Algorithm for Multiple Resources Example of banker's algorithm with multiple resources

Agenda: 

Agenda 3.1. Resource 3.2. Introduction to deadlocks 3.3. The ostrich algorithm 3.4. Deadlock detection and recovery 3.5. Deadlock avoidance 3.6. Deadlock prevention 3.7. Other issues

Deadlock PreventionAttacking the Mutual Exclusion Condition: 

Deadlock Prevention Attacking the Mutual Exclusion Condition Some devices (such as printer) can be spooled only the printer daemon uses printer resource thus deadlock for printer eliminated Not all devices can be spooled Principle: avoid assigning resource when not absolutely necessary as few processes as possible actually claim the resource

Attacking the Hold and Wait Condition: 

Attacking the Hold and Wait Condition Require processes to request resources before starting a process never has to wait for what it needs Problems may not know required resources at start of run also ties up resources other processes could be using Variation: process must give up all resources then request all immediately needed

Attacking the No Preemption Condition: 

Attacking the No Preemption Condition This is not a viable option Consider a process given the printer halfway through its job now forcibly take away printer !!??

Attacking the Circular Wait Condition (1): 

Attacking the Circular Wait Condition (1) Normally ordered resources A resource graph (a) (b)

Attacking Deadlock Condition: 

Attacking Deadlock Condition Summary of approaches to deadlock prevention

Agenda: 

Agenda 3.1. Resource 3.2. Introduction to deadlocks 3.3. The ostrich algorithm 3.4. Deadlock detection and recovery 3.5. Deadlock avoidance 3.6. Deadlock prevention 3.7. Other issues

Other IssuesTwo-Phase Locking: 

Other Issues Two-Phase Locking Phase One process tries to lock all records it needs, one at a time if needed record found locked, start over (no real work done in phase one) If phase one succeeds, it starts second phase, performing updates releasing locks Note similarity to requesting all resources at once Algorithm works where programmer can arrange program can be stopped, restarted

Nonresource Deadlocks: 

Nonresource Deadlocks Possible for two processes to deadlock each is waiting for the other to do some task Can happen with semaphores each process required to do a down() on two semaphores (mutex and another) if done in wrong order, deadlock results

Starvation: 

Starvation Algorithm to allocate a resource may be to give to shortest job first Works great for multiple short jobs in a system May cause long job to be postponed indefinitely even though not blocked Solution: First-come, first-serve policy

authorStream Live Help