Concurrent Engineering_Benny

Views:
 
Category: Entertainment
     
 

Presentation Description

No description available.

Comments

Presentation Transcript

Manufacturing Systems:

Manufacturing Systems Concurrent Engineering

PowerPoint Presentation:

Concurrent Engineering: Is a strategy where all the tasks involved in product development are done in parallel. Collaboration between all individuals, groups and departments within a company. Customer research Designers Marketing Accounting Engineering Concurrent Engineering

PowerPoint Presentation:

Concurrent Engineering Form Design Functional Design Production Design Revising and testing prototypes Manufacturing Specifications Design Specifications Feasibility Study Idea Generation Suppliers R&D Customers Marketing Competitors Product or Service concept Performance Specifications Pilot run and final tests Final Design and process plans Product Launch Preliminary Design Commercial Design Process Linear Process

PowerPoint Presentation:

Concurrent Engineering Techniques : Perceptual mapping Benchmarking Reverse Engineering

PowerPoint Presentation:

Concurrent Engineering Low Nutrition Good Taste Bad Taste High Nutrition Coco Pops Rice Krispies Cheerios Shredded Wheat Perceptual Mapping Compares customers perception of available products Identifies gap in market

PowerPoint Presentation:

Concurrent Engineering Benchmarking Get the best product available Base performance specifications for new product on it Reverse Engineering Dismantle and inspect competitors product(s) Select features to incorporate into new product

PowerPoint Presentation:

Concurrent Engineering Demand for the proposed product? Cost of developing and producing the product? Does company have manufacturing capability? Skilled personnel?

PowerPoint Presentation:

Concurrent Engineering Form Design: Physical appearance of the product Functional Design: Performance of the product Production Design: How to manufacture product

PowerPoint Presentation:

Concurrent Engineering Prototype produced Adjustments made Final specification agreed

PowerPoint Presentation:

Concurrent Engineering Manufacturing process commences Product is marketed to buying public

PowerPoint Presentation:

Concurrent Engineering Traditional Process = Linear Vs Concurrent Engineering = Team collaboration

PowerPoint Presentation:

Concurrent Engineering Why Concurrent Engineering? Pace of market change has increased Companies must keep pace with changing markets Decisions made sooner rather than later Reduces/eliminates repetition of tasks Reduces waste and reworking of design Product quicker to market Maximises company profit Company operates more efficiently

PowerPoint Presentation:

Concurrent Engineering To make decisions concurrently: Team knows the design goals/objectives Team is aware of the interrelationships between all aspects of the design process Superior communication between all sections of the company Method: Quality Function Deployment (QFD)

PowerPoint Presentation:

Concurrent Engineering Quality Function Deployment (QFD) Collection of matrices that converts the needs of the customer into technical specifications at all stages of the design and manufacture process. Product Planning (most popular) House of Quality

PowerPoint Presentation:

Customer requirements prioritised (scale or %) Competitive product evaluation Engineering characteristics Interrelationships of 1 & 3 Relations between engineering characteristics Targets for new product Concurrent Engineering House of Quality 1 2 3 4 5 6

PowerPoint Presentation:

Concurrent Engineering Example: Water-pond Alarm 1. Identify customer requirement and prioritise them (scale or %)

PowerPoint Presentation:

Concurrent Engineering 2. Compare product to competitors Competitive Assessment Attribute 1 2 3 4 5 Sensitive to water level 25 A X Durable 15 A B X Makes a loud noise 10 B X A Inexpensive 25 B A X Small 10 B A X Looks Good 15 B X A weighting B

PowerPoint Presentation:

Concurrent Engineering 3.Identify engineering characteristics Attribute Sensitive to water level 25 ++ + ++ Durable 15 + Makes a loud noise 10 + - Inexpensive 25 -- + -- Small 10 - - Looks Good 15 + Weighting Complexity of circuit Energy Efficiency Material for casing Cost of Sensor

PowerPoint Presentation:

Concurrent Engineering 4. Identify strength of interrelationships between customer requirements and the engineering characteristics. Attribute Sensitive to water level 25 ++ + ++ Durable 15 + Makes a loud noise 10 + - Inexpensive 25 -- + -- Small 10 - - Looks Good 15 + Weighting Complexity of circuit Energy Efficiency Material for casing Cost of Sensor Legend: Positive correlation + Strong positive correlation ++ None Negative correlation - Strong Negative correlation - -

PowerPoint Presentation:

Concurrent Engineering Sensitivity to water level is likely to be very dependent on complexity of circuit Attribute Sensitive to water level 25 ++ + ++ Durable 15 + Makes a loud noise 10 + - Inexpensive 25 -- + -- Small 10 - - Looks Good 15 + Weighting Complexity of circuit Energy Efficiency Material for casing Cost of Sensor Increasing the noise level could reduce the energy efficiency Interpreting the matrix

PowerPoint Presentation:

Concurrent Engineering A complex circuit and quality sensor could increase cost of product Attribute Sensitive to water level 25 ++ + ++ Durable 15 + Makes a loud noise 10 + - Inexpensive 25 -- + -- Small 10 - - Looks Good 15 + Weighting Complexity of circuit Energy Efficiency Material for casing Cost of Sensor The choice of material will affect the durability of the product

PowerPoint Presentation:

Concurrent Engineering 5. Identify correlation between engineering characteristics. Increasing complexity of circuit could require a more costly sensor A good quality sensor could improve energy efficiency Complex circuit (more parts) could reduce energy efficiency

PowerPoint Presentation:

Concurrent Engineering 6. Identify targets for new product Target 120 120 <30

PowerPoint Presentation:

Concurrent Engineering © 2002 DRM Associates

PowerPoint Presentation:

Concurrent Engineering Role of CAD in Design & Manufacture Model part or assembly being designed Part visualised and manipulated on screen Realistic Function tested Textures & lighting effects can be applied Photorealistic effects Manufacturing drawings generated automatically Modelled part and its manufacturing requirements shared with the entire design and manufacturing team

PowerPoint Presentation:

Concurrent Engineering Role of CAD in Design & Manufacture Geometry from CAD system used to produce part on CAM system CAD model used by marketing to create images for packaging Simulate behaviour of product under stresses and forces using CAE system Model data used by rapid prototyping machine

PowerPoint Presentation:

Concurrent Engineering Role of CAD in Design & Manufacture Advantages : All above can be done concurrently Manufacturing problems identified early Changes in design can be seen immediately Speeds up design and prototyping processes

PowerPoint Presentation:

Concurrent Engineering Design for the Environment There are three major elements of design for the environment: Design for environmental manufacturing Design for environmental packaging Design for disposal and recyclability.

PowerPoint Presentation:

Concurrent Engineering Design for Environmental Manufacturing: Non-toxic processes & production materials Minimum energy utilization Minimize emissions Minimize waste, scrap & by-products

PowerPoint Presentation:

Concurrent Engineering Design for Environmental Packaging: Minimum of packaging materials Reusable pallets and packaging Recyclable packaging materials Bio-degradable packaging materials

PowerPoint Presentation:

Concurrent Engineering Design for Disposal & Recycling: Re-use/refurbishment of components & assemblies Material selection to enable re-use (e.g., thermoset plastics vs. thermoplastics) and minimize toxicity Avoids filler material in plastics such as fibreglass and graphite Minimum number of materials/colours to facilitate separating materials and re-use Design for serviceability to minimize disposal of non-working products

PowerPoint Presentation:

Concurrent Engineering Design for Disposal & Recycling: Material identification to facilitate re-use Design to enable materials to be easily separated Design for disassembly (e.g., fracture points, fastening vs. bonding) Avoid use of adhesives Limit contaminants - additives, coatings, metal plating of plastics, etc. Maximize use of recycled or ground material with virgin material

PowerPoint Presentation:

Concurrent Engineering Impact of Product Life Cycle on the Environment Product life cycle = design, manufacture, use & disposal stages of product Minimise a products negative impact on the environment Incorporate DfE considerations into design process of a new product

PowerPoint Presentation:

Concurrent Engineering Case study 1: Desktop computer Design Stage: The design could specify the following Reusable components e.g. monitor, keyboard Recycled materials where possible Minimise toxic materials used Manufacture: Use ethical work practices and sources for raw materials Use ‘clean’ manufacturing processes Minimise transport of components and materials Implement quality procedures to minimise waste etc. Use: Low power consumption Serviceable items rather than replaceable e.g. disk drive, peripherals etc. Disposal: Design for disassembly – use easily dismantled fixings etc. Identify materials used for recycling Minimise mixed materials to facilitate separation later

PowerPoint Presentation:

Concurrent Engineering Role of Testing in Product Design Cannot predict with absolute certainty how product will perform Need test product before mass production Mass production very costly to setup Changes cannot be made easily Speeds up design and prototyping processes

PowerPoint Presentation:

Concurrent Engineering Role of Testing in Product Design Possible tests: Product meets performance specifications Expected life of product Likely cause of failure Accelerated testing

PowerPoint Presentation:

Concurrent Engineering Test Procedure Minimum performance Result Casing Seal Submerge in water for 8 hours Remove, Dry, disassemble and inspect No evidence of water ingress Sensitivity of sensor Submerge probes to 8mm in sample of pond water Retract Alarm should trigger before 8mm is reached Alarm should reset within 1 min Battery life Trigger alarm and measure time until battery depletes. Alarm should sound for 1 hour minimum Ability to withstand extreme weather Place in freezer at -15°C and in oven at 50°C for 1 hour No damage should be apparent to casing or function Alarm Volume Trigger in an unobstructed area then move away until alarm is no longer audible Should be audible up to 30m Performance test: Pond Alarm

PowerPoint Presentation:

Concurrent Engineering Role of Accelerated Testing Used when expected life is long to capture life data Life data is needed to estimate the reliability of a product Tests are conducted on a sample or prototype Tests cause product to fail in same manner as normal use Test time is greatly reduced Product is quicker to market Low development and warranty costs Qualitative or Quantitative

PowerPoint Presentation:

Concurrent Engineering Qualitative Accelerated Tests To reveal probable failure modes Good tests quickly reveal failure modes Improve design product Performed on small number of samples Product subjected to one severe level of stress e.g. Stress cycling or hot to cold Product intact – pass Failure - action taken to eliminate cause of failure Only tests conditions encountered in real use Cannot be used to quantify life of product

PowerPoint Presentation:

Concurrent Engineering Quantitative Accelerated Life Tests Quantify the life of the product Controlled application of accelerated stress conditions to simulate product failure Reduces the time-to-failure for a product Data used to estimate reliability of product

PowerPoint Presentation:

Concurrent Engineering Example: A washing machine to last for ten years in normal use. Expected typical household use: three times a week for a wash cycle that will last for 2 hours on average. What type of test should be used? How long must the machine survive during the test? Total hours life required for the machine is: 2 hours/wash x 3 washes/week x 52 weeks/year x 10 years = 3120 hours Use a quantitative accelerated test. Run the machine constantly for 3120 hours

PowerPoint Presentation:

Concurrent Engineering Sample Paper: HL Explain why accelerated testing is used on some products. Some products have a long life – need to test reliability – quantify life of product - warranty A washing machine will be used for two hours per day, three days per week in normal use. What type of accelerated testing will determine the lifetime of the washing machine? Quantitative test – data is used to determine expected normal life time of product During testing, the washing machine ran for 3000 operating hours before failing. Recommend a suitable guarantee period for the washing machine and give reasons for your recommendation. 2hrs/day x 3days/week = 6hrs/week 3000/6 = 566.67 weeks 566.67/52 = 10.8975 Guarantee period = 10 years.

authorStream Live Help