Effect of water stress and its management in vegetables

Views:
 
Category: Education
     
 

Presentation Description

No description available.

Comments

Presentation Transcript

Effect of water stress and its management in vegetables :

1 Effect of water stress and its management in vegetables

Content:

2 Content Introduction Mechanism of water stress injury Effect of water stress - Physiological trait - Biochemical trait - Growth and yield parameters Mechanism of water stress resistance Water stress management Hardening Antitranspirants Plant growth regulator and other chemicals Mulching Conclusion Future thrust

PowerPoint Presentation:

3 Introduction

Mechanism of water stress injury:

4 Mechanism of water stress injury

PowerPoint Presentation:

5 Increased mesophyll resistance Decreased photosynthesis Decreased Metabolic disturbances Development Increased Loss of inter cellular space Stomatal closure Growth inhibition Zone of cell flaccidity Zone of cell turger Dehydration Water stress Decreased photosynthesis and respiration Increased concentration Decreased diffusion and metabolic shifts Increased respiration Increased Respiration (glycolysis or PPP) Decreased photosynthesis and respiration Fig.1 Effect of water stress induced dehydration on growth, photosynthesis and respiration

Potential stress factors responsible for water stress:

6 Potential stress factors responsible for water stress Chilling : Excess transpiration over water absorption by chilled roots Freezing : Transpiration in absence of translocation through the frozen xylem Freezing : Intercellular ice formation Heat: Drought Radiation: Heat formed Salt: Osmotic water stress which lowered environmental water potential Wind: Increase in water potential gradient between plant and surrounding air

PowerPoint Presentation:

7 Fig. 2: Water stress injury in tomato

Dehydration:

8 Dehydration

Table 1: Drought stress on proline in leaves of tomato cultivars:

9 Table 1: Drought stress on proline in leaves of tomato cultivars Cultivar 4-day stress 7-day stress 10-day stress Control Stress Control Stress Control Stress Solan gola 79.2 305.1 101.5 469.8 109.8 2659.8 Yashvant A-2 21.6 86.2 26.6 119.8 103.2 2666.4 Gold maker 10.4 358.4 13.3 616.5 202.5 926.5 Vaishali 35.2 1116.1 43.1 2133.2 86.5 2660.4 Roma 58.9 412.2 79.9 713.2 119.8 886.4 Naveen 60.2 609.2 69.9 1200 112.5 1511.8 Rupali 18.1 1126.8 21.3 2479.9 83.3 2839.8 Kt-10 34.2 840.1 46.6 1569.5 113.2 2760.9 LSD(0.01) 12.1 43.6 8.3 69.4 26.6 112.4 Solan Thakur (1991)

Table 2: Effect of water stress on height, relative water content and injury index in Capsicum annum. :

10 Table 2: Effect of water stress on height, relative water content and injury index in Capsicum annum. Variety 4 day stress 8 day stress Height inhibition (%) RWC (%) Injury index (%) Height inhibition (%) RWC (%) Injury index (%) Yolo wonder 17.9 70.8 51.8 26.5 59.4 72.8 California wonder 25.2 67.6 46.3 29.1 52.2 65.1 Early prolific 30.1 58.6 56.7 33.4 43.8 80.3 Chinese bean 18.0 66.9 60.8 20.1 34.5 88.4 EC 160093 6.6 44.9 56.0 15.2 35.2 88.0 EC 175961 24.7 55.5 76.1 31.6 10.7 94.3 Florida Giant 11.6 50.1 58.8 28.5 37.2 83.1 Emwrald Giant 27.3 41.1 53.0 31.2 28.9 75.6 Bullnose 32.2 56.5 56.3 39.4 36.4 82.6 HC 20IB 19.1 43.6 56.1 23.2 29.9 87.0 Hrc 26.0 45.5 84.3 34.0 11.5 98.9 HC 213 32.6 44.7 75.6 34.4 32.4 85.7 HC 201 23.7 58.7 79.8 27.3 28.6 91.6 Sweet Banana 30.0 51.8 80.2 38.0 29.0 96.0 CG Verms 13.8 50.5 68.8 15.8 40.5 77.5 Osh Region 27.6 53.4 70.2 31.6 11.5 96.0 Hungarian Wax 35.0 54.4 62.1 39.4 33.7 76.9 C.D. at 5 % 4.12 2.14 8.16 7.96 5.39 12.49 Solan Thakur et al. (1999a)

Over heating:

11 Over heating

Table 3: Effect of stress on leaf diffusive resistance (sec./m) in bell pepper after 42 days of transplanting:

12 Table 3: Effect of stress on leaf diffusive resistance (sec./m) in bell pepper after 42 days of transplanting Varieties Treatment Unstressed 4 day stress 8 day stress Yolo wonder 3.04 7.36 15.02 California wonder 4.12 8.24 16.64 Early prolific 4.44 7.84 14.92 Chinese bean 3.40 6.92 13.86 EC 160093 5.99 8.78 15.37 EC 175961 3.77 7.24 14.44 Florida Giant 5.10 8.99 15.34 Emwrald Giant 5.33 9.21 16.01 Bullnose 3.79 6.89 13.76 HC 20IB 3.90 7.21 14.88 Hrc 3.42 6.99 14.22 HC 213 3.62 7.01 14.98 HC 201 4.27 7.01 15.20 Sweet Banana 5.21 8.97 15.09 CG Verms 2.82 6.27 14.76 Osh Region 0.90 4.33 12.62 Hungarian Wax 0.93 4.03 10.89 C.D. at 5 % - -0.964 0.060 Solan Thakur et al ,(1999a)

Effect of water stress on physiological and biochemical traits:

13 Effect of water stress on physiological and biochemical traits

Table 4: Effect of moisture stress on biochemical changes in pea seedling:

14 Table 4: Effect of moisture stress on biochemical changes in pea seedling Name of genotype Time Arkel Vp 8125 VL 3 VP 8005 Peroxidase 0h 105.3 57.3 66.3 112.2 24h 124.0 64.7 76.3 128.7 48h 133.0 85.0 101.3 135.3 72h 143.3 79.0 172.7 192.7 Catalase 0h 26.40 30.93 30.10 23.38 24h 24.28 25.61 25.58 24.70 48h 22.91 25.91 27.10 26.38 72h 22.95 24.76 26.45 22.93 Ascorbic acid oxidase 0h 143.3 169.0 170.0 145.3 24h 121.7 162.3 151.7 132.7 48h 87.7 100.3 93.7 62.0 72h 83.7 85.3 82.0 52.0 Protein mg/g (dry wt.) 0h 92.6 90.4 84.3 73.0 24h 70.2 73.9 78.8 65.8 48h 62.8 63.9 67.4 58.2 72h 60.1 62.1 61.4 56.4 Proline 0h 2.28 2.27 2.27 2.29 24h 2.43 4.22 3.38 2.71 48h 2.82 5.16 4.07 3.63 72h 2.95 6.80 5.58 5.58 RWC 0h 91.8 92.5 91.4 92.6 24h 74.5 81.1 75.7 75.5 48h 63.0 68.3 61.7 61.6 72h 57.1 62.4 59.3 53.8 U.P. Sarkar et al .( 1989)

PowerPoint Presentation:

15 Fig. 3: Total lipid content in roots of pea seedling with different water potentials Ranichauri Kumar et al . (1990)

PowerPoint Presentation:

16 Fig. 4: Relation between photosynthetic rate and stomatal conductance in irrigated and rainfed bell pepper plant Italy Delfine et al . (2002)

Effect of water stress on plant growth and yield:

17 Effect of water stress on plant growth and yield

PowerPoint Presentation:

18 Fig.5: Germination of the seeds of pea varieties under different external water potentials Ranichauri (Uttranchal) Kumar et al. (1990)

Table 5: Changes in fresh weight of shoots of tomato under different duration of stress:

19 Table 5: Changes in fresh weight of shoots of tomato under different duration of stress Cultivars Fresh weight of shoot (g/plant) 4-day stress 7-day stress 10-day stress Control Stress Control Stress Control Stress Solan gola 12.0 10.7 (12.7 ) 15.1 10.9 (27.5) 17.2 8.5 (50.5) Yashvant A-2 8.6 7.2 (15.6) 11.6 8.3 (28.2) 16.5 5.0 (69.3) Gold maker 6.6 5.6 (15.2) 13.0 8.6 (33.6) 15.6 4.8 (68.8) Vaishali 7.3 6.1 (16.8) 11.9 7.6 (36.2) 13.8 4.2 (69.5) Roma 11.6 10.2 (11.9) 13.6 9.5 (30.3) 16.7 7.4 (55.9) Rupali 6.9 5.3 (15.8) 10.8 7.8 (28.0) 13.5 6.1 (54.5) Kt-10 6.6 5.3(19.7) 9.6 6.0 (38.1) 16.1 4.7 (70.7) LSD (0.01) 2.06 2.61 4.12 2.01 4.60 2.25 Solan Thakur (1991) Figures in parenthesis indicate percentage

Table 6: Effect of irrigation and salinity on yield and quality of tomato fruit:

20 Table 6: Effect of irrigation and salinity on yield and quality of tomato fruit Treatment Yield t/ha Fruit water content (%) Soluble solid content ( 0 Brix) Control 90.2 a 94.6 a 4.58 c 50-day cutoff 80.2 a 94.2 a 5.15 b 75-day cutoff 60.4 b 93.5 c 5.36 a Saline from first flower 92.6 a 94.1 b 4.98 b California Mitchell and Shennan (1991)

Mechanism of water stress resistance:

21 Mechanism of water stress resistance

PowerPoint Presentation:

22 Drought avoidance

Drought avoiding plant must maintain - High water potential - Thick and highly impermeable cuticle - Closure of stomata - More waxier leaves - Higher root -shoot ratio:

23 Drought avoiding plant must maintain - High water potential - Thick and highly impermeable cuticle - Closure of stomata - More waxier leaves - Higher root -shoot ratio

PowerPoint Presentation:

24 Water potential (bar) Av. Shoot length (cm) Av. Root length (cm) Root/shoot ratio Arkel Azad Pea-1 Pant Udphar Arkel Azad Pea -1 Pant Udphar Arkel Azad Pea-1 Pant Udphar Control 1.00 3.90 2.30 1.60 8.60 3.10 1.60 2.21 1.35 -3.0 0.60 2.00 1.23 1.60 3.80 1.74 2.66 1.90 1.41 -5.0 0.30 0.60 0.54 0.90 2.50 1.70 3.00 4.15 3.07 -7.5 - 0.40 0.52 - 2.20 1.60 - 5.50 3.00 -10.0 - - 0.50 - - 1.50 - - Table 7: Effect on root and shoot length of pea ( Pisum sativum L.) varities under different external water potentials Ranichuri Kumar et al. (1990)

Drought tolerance:

25 Drought tolerance

Table 8: The extent of recovery for some plant parameters 24 hours after rewatering the severally stress eggplant:

26 Table 8: The extent of recovery for some plant parameters 24 hours after rewatering the severally stress eggplant Parameters Pre stress value + S. E. Recovery value + S. E. Leaf water potential (bar) -4.6 + 0.16 -4.6 + 0.20 Relative water content (%) 91.21 + 0.17 91.39 + 0.60 Leaf pressure potential (bar) 5.0 + 0.46 8.34 + 0.35 Sap osmotic potential (bar) -10.35 + 0.55 -13.06 + 0.37 Karnataka Rao and Bhatt (2001)

Water stress management:

27 Water stress management

Hardening:

28 Hardening

Table 9: Influence of water stress ameliorants on the growth of brinjal:

29 Table 9: Influence of water stress ameliorants on the growth of brinjal Treatment Plant height (cm) No. of branches No. of leaves / pl. Leaf area (cm/pl.) Seed hardening for 40 0 C for 12 hrs 57.4 4.2 53.2 2926.5 Seed soaking in 1.0 % KH 2 PO 4 for 12 hrs 58.5 4.3 62.9 3522.4 1.0 % KCl 60.8 4.9 63.5 3556.0 0.5 % Diammonium phosphate 55.3 4.5 61.8 3398.2 500 ppm CCC 56.0 5.0 51.6 2575.0 1000 ppm 8-OH hydroxyquinone 52.6 4.0 52.7 2845.0 100 ppm Ascorbic acid 51.5 3.9 54.5 2943.0 Control 50.5 4.1 45.0 2520.0 C.D.(P= 0.05) 0.337 45.0 162.11 Periyakulam Balakrishnan et al , (1993)

Table 10 : Influence of water stress ameliorants on the physiological parameters of brinjal:

30 Table 10 : Influence of water stress ameliorants on the physiological parameters of brinjal Treatment Chlorophyll content Photosynthetic rate (mg co 2 /cm 2 /hr) Transpiration rate (ug x H20 cm 2 / sec) Proline content (ug/g) Seed hardening for 40 0 C for 12 hrs 1.245 11.5 3.28 139.76 Seed soaking in 1.0 % KH 2 PO 4 for 12 hrs 1.301 11.8 2.39 147.11 1.0 % KCl 1.285 19.6 1.97 160.42 0.5 % Diammonium phosphate 1.347 16.7 2.15 140.71 500 ppm CCC 1.456 14.5 2.05 151.34 1000 ppm 8-OH hydroxyquinone 1.281 13.9 2.37 138.21 100 ppm Ascorbic acid 1.325 15.1 3.05 120.71 Control 1.147 10.7 3.64 90.52 C.D. (P= 0.05) NS 3.19 0.911 28.11 Periyakulam Balakrishnan et al , (1993)

Table 11: Yield of brinjal Influence by water stress ameliorants:

31 Table 11: Yield of brinjal Influence by water stress ameliorants Treatment Dry matter production (g/pl.) No. of fruits /pl. Yield (g/pl.) Seed hardening for 40 0 C for 12 hrs 53.2 19.5 570 Seed soaking in 1.0 % KH 2 PO 4 for 12 hrs 54.7 23.9 670 1.0 % KCl 55.9 26.0 760 0.5 % Diammonium phosphate 51.5 20.1 550 500 ppm CCC 48.5 23.0 690 1000 ppm 8-OH hydroxyquinone 49.7 20.0 540 100 ppm Ascorbic acid 48.8 17.5 490 Control 45.6 19.0 550 C.D.(P= 0.05) 3.52 2.21 63.30 Periyakulam Balakrishnan et al , (1993)

Use of antitranspirants:

32 Use of antitranspirants

Table 12 : Effect of antitanspirants on fruit quality of brinjal:

33 Table 12 : Effect of antitanspirants on fruit quality of brinjal Treatment Carbohydrate (%) Protein (%) acid Ascorbic acid (mg/g) Control 32.1 10.27 11.18 Stress 30.34 9.17 10.84 Stress + Cycocel 30.87 9.86 10.71 Stress + Limewash 30.56 9.64 10.75 Stress + Potassium chloride 30.37 9.21 10.70 C.D. (P= 0.05) 0.53 0.13 0.21 Coimbatore Prakash et al ,(1992)

Table 13 : Effect of antitanspirants on fruit yield of brinjal:

34 Table 13 : Effect of antitanspirants on fruit yield of brinjal Treatment Fruit set (%) Number of fruits / pl. Yield (t/ha) Control (T 1 ) 29.52 12.4 12.62 Stress (T 2 ) 23.62 6.3 5.69 Stress + Cycocel (T 3 ) 24.91 8.6 7.13 Stress + Lime wash (T 4 ) 22.10 6.7 5.79 Stress + Potassium chloride (T 5 ) 27.90 8.0 6.84 C.D. (p= 0.05) 0.43 1.13 1.34 Coimbatore Prakash et al ,(1992)

Table 14 : Effect of antitanspirants on morphological and physiological characters of brinjal:

35 Table 14 : Effect of antitanspirants on morphological and physiological characters of brinjal Treatment No. of leaves / pl. Leaf area (cm 2 /pl.) Total DMP (g/pl..) Shoot / root ratio Relative water content (%) Chlorophyll content ‘a’ ‘b’ Control (T 1 ) 26.50 1469.24 7.87 4.21 58.36 1.870 0.621 Stress (T 2 ) 18.25 556.91 3.21 3.45 48.58 1.626 2.171 Stress + Cycocel (T 3 ) 13.25 521.85 4.17 3.14 67.76 1.979 2.694 Stress + Limewash (T 4 ) 17.50 674.42 4.46 3.57 52.11 1.887 2.526 Stress + Potassium chloride (T 5 ) 17.25 748.76 4.74 3.77 56.65 1.732 2.411 C.D. (p= 0.05) 1.6 394.19 1.11 0.35 2.46 0.23 0.19 Coimbatore Prakash et al ,(1993)

Use of plant growth regulators and other chemicals:

36 Use of plant growth regulators and other chemicals

:

37 Varieties Treatments Control (no spray) T 1 Methanol (10 %) T 2 Paclobutrazol (5 ppm) T 3 Mixitalol (5 ppm) T 4 S 1 S 2 S 1 S 2 S 1 S 2 S 1 S 2 Fruit number Yolo Wonder 5.50 3.00 4.80 5.57 4.60 2.20 5.90 5.80 Emerald Giant 6.30 6.10 5.80 4.80 3.80 3.83 5.80 5.70 California Giant 5.70 6.20 4.20 6.20 5.80 7.00 5.00 7.70 HC 201 B 4.58 5.00 5.80 5.65 7.60 7.80 7.30 7.70 Mean 5.52 5.07 5.15 5.55 5.45 5.71 6.00 6.72 C.D. (0.05) T (0.285); V (0.286); T x V (0.571); S (0.202); T x S (0.403); V x S (0.401) Fruit yield (g / plant) Yolo Wonder 140 101 139 160 125 45 212 130 Emerald Giant 160 145 175 147 115 122 175 160 California Giant 146 185 145 198 110 162 158 290 HC 201 B 170 148 297 115 215 185 290 192 Mean 154 144.7 189 155 141.2 128.2 205 196.7 C.D. (0.05) T (8.228); V (8.208); T x V (16.46); S (5.818); T x S (11.64); V x S (11.63) Table 15 : Effect of bio-regulators on fruit number and yield in bell pepper non- stress (S 1 ) and water stress (S 2 ) conditions Solan Thakur et al ,(1999b)

:

38 Varieties Treatments Control (no spray) T 1 Methanol (10 %) T 2 Paclobutrazol (5 ppm) T 3 Mixitalol (5 ppm) T 4 S 1 S 2 S 1 S 2 S 1 S 2 S 1 S 2 Capsaicin (mg/fresh weight) Yolo Wonder 2.35 2.09 2.20 2.47 3.60 2.43 2.85 2.43 Emerald Giant 3.25 3.25 3.82 2.16 2.89 2.42 3.25 2.80 California Giant 3.32 3.10 3.50 3.25 2.90 2.98 3.60 3.42 HC 201 B 2.75 2.98 2.82 2.65 2.64 2.78 2.72 2.60 Mean 2.91 2.85 3.08 2.63 3.00 2.65 3.10 2.81 C.D. (0.05) T (0.147) ; V (0.154) ; T x V (0.322) ; S (0.110) ; T x S (0.246) ; V x S (0.232) Acidity (%) Yolo Wonder 2.52 3.92 2.21 3.76 2.10 3.52 2.00 3.80 Emerald Giant 3.00 2.58 2.58 2.68 2.29 2.00 3.10 2.97 California Giant 2.82 3.82 2.90 3.90 2.80 3.56 2.98 3.98 HC 201 B 3.20 2.78 2.48 3.00 2.62 3.25 3.26 3.16 Mean 2.88 3.27 2.54 3.33 2.45 3.13 2.83 3.57 C.D. (0.05) T (0.011); V (0.014); T x V (0.021); S (0.009); T x S (0.024); V x S (0.036) Table 16 : Effect of bio regulators on quality in bell pepper under non-stress(S 1 ) and water stress (S 2 ) conditions Solan Thakur et al ,(1999b)

Mulching:

39 Mulching

Table 17: Interaction effects of mulching, growth regulators and potassium on leaf area and leaf area index at 50 % water deficit:

40 Table 17: Interaction effects of mulching, growth regulators and potassium on leaf area and leaf area index at 50 % water deficit Treatment Mulch material M 1 M 2 M 3 M 4 Leaf area Leaf area index Leaf area Leaf area index Leaf area Leaf area index Leaf area Leaf area index T 1 12.43 1.62 14.66 1.89 14.82 1.91 15.85 1.99 T 2 16.99 2.08 15.90 2.15 16.86 2.10 16.68 2.32 T 3 17.10 2.53 16.64 2.67 16.47 2.06 17.07 3.27 T 4 17.06 2.36 16.31 2.76 16.64 2.64 24.53 3.29 T 5 15.47 2.17 18.80 2.67 15.89 2.64 17.15 3.56 T 6 16.62 2.76 18.06 3.43 16.88 3.31 18.96 3.56 C.D. (0.05) 1.01 0.22 1.26 0.61 0.94 0.09 0.60 0.11 Solan Thakur et al ,(2002) T 1 = no spray, T 2 = triacontanol first spray 20 ppm and second spray 50 ppm,, T 3 = 0.5% KCl single spray, T 4 = 0.5 % K double spray, T 5 = 1 % K single spray, T 6 = 1 % KCl double spray, M 1 = unmulched , M 2 =dry grass mulch, M 3 = lantana mulch, M 4 =plastic mulch.

Table 18 : Interaction effects of mulching, growth regulators and potassium on plant height and fruit yield at 50 % water deficit:

41 Table 18 : Interaction effects of mulching, growth regulators and potassium on plant height and fruit yield at 50 % water deficit Treatment Mulch material M 1 M 2 M 3 M 4 Pl. height Fruit yield Pl. height Fruit yield Pl. height Fruit yield Pl. height Fruit yield T 1 20.4 64.40 21.7 68.60 22.8 74.20 23.0 86.80 T 2 21.1 66.80 23.2 79.08 23.8 93.60 24.5 103.60 T 3 23.5 76.84 24.5 88.20 24.5 126.00 26.5 193.20 T 4 21.7 88.20 26.6 91.00 27.1 163.80 26.1 198.80 T 5 24.2 91.00 28.5 121.80 28.7 135.80 27.7 195.40 T 6 25.8 121.80 28.6 123.20 30.2 152.60 33.1 247.80 C.D. (0.05) 2.5 4.11 1.8 8.86 1.6 9.06 1.2 1.01 Solan Thakur et al , (2002) T 1 = no spray, T 2 = Triacontanol first spray 20 ppm and second spray 50 ppm,, T 3 = 0.5% KCl single spray, T 4 = 0.5 % K double spray, T 5 = 1 % K single spray, T 6 = 1 % KCl double spray, M 1 = unmulched , M 2 =dry grass mulch, M 3 = lantana mulch, M 4 =plastic mulch,

Conclusion :

42 Conclusion Water stress is one of the frequent and ubiquitously spread factors that limits the production of vegetables. The stress caused water deficit in the plant system, which is capable of inducing potential injury by reducing stomatal conductance, photosynthesis and physiological and biochemical processes which effect germination, plant survival, yield and quality. Vegetable crops can adjust to short-term water stress by maintaining higher water potential, increased root-shoot ratio, lowered transpiration rate etc . Hardening of seeds with KCl or 1 % spray of KCl on plant and plastic mulch can check the harmful effects of water stress to a certain extent.

Future thrust:

43 Future thrust Extensive physiological studies under stress conditions involving more number of varieties/genotypes are required to come to a conclusion regarding physiological mechanisms.

Thank you:

44 Thank you

authorStream Live Help