COTTON IN LIGHT OF EVOLUTION

Views:
 
Category: Education
     
 

Presentation Description

No description available.

Comments

Presentation Transcript

COTTON IN LIGHT OF EVOLUTION:

1 C OTTON I N L IGHT OF E VOLUTION

Contents:

2 Contents Introduction History and Evolution Cytogenetic Investigations Molecular Investigations Morphological Diversity in Cultivated Species Milestones in Cotton Improvement Conclusion Future Prospects

Introduction:

3 Introduction Key role in human civilization Vital role in national economy White gold Dominancy over synthetic fibres

PowerPoint Presentation:

4

PowerPoint Presentation:

5 Source: http://www.indiaonestop.com/cotton/cotton.htm World's major cotton producing countries for the year 2004-05 (In Million bales & Percentage)

PowerPoint Presentation:

6 Source: http://www.indiaonestop.com/cotton/cotton.htm * Estimated

PowerPoint Presentation:

7 Source: http://www.indiaonestop.com/cotton/cotton.htm * Estimated

PowerPoint Presentation:

8 Fig. 1: The Clade tree for the Gossypium spp.

PowerPoint Presentation:

9 Table 1: Gossypium Species, their Genomes and Distribution No. Species Genome Distribution No. Species Genome Distribution Diploid (2n = 26) 26 G. thurberi D 1 America 1 G. africanum A Africa 27 G. armourianum D 2-1 America 2 G. herbaceum (Cult.) A 1 Afghanistan 28 G. harknessii D 2-2 America 3 G. arboreum (Cult.) A 2 Indo-Burma 29 G. klotzschianum D 3-k America 4 G. anomalum B 1 Africa 30 G. davidsonii D 3-d America 5 G. triphyllum B 2 Africa 31 G. aridum D 4 America 6 G. barbosanum B 3 Cape Verede 32 G. raimondii D 5 America 7 G. capitis-viridis B 4 Cape Verede 33 G. gossypioides D 6 America 8 G. sturtianum C 1 Australia 34 G. lobatum D 7 America 9 G. nandewarense C 1-n Australia 35 G. trilobum D 8 America 10 G. robinsonii C 2 Australia 36 G. laxum D 9 America 11 G. australe C 3 Australia 37 G. turneri “D” America 12 G. pilosum “C” Australia 38 G. stocksii E 1 Arabia 13 G. costulatum C 5 Australia 39 G. somalense E 2 Arabia 14 G. populifolium C 6 Australia 40 G. areysianum E 3 Arabia 15 G. cunninghamii C 7 Australia 41 G. incanum E 4 Arabia 16 G. pulchellum C 8 Australia 42 G. longicalyx F 1 Africa 17 G. nelsonii C 9 Australia 43 G. bickii G 1 Australia 18 G. enthyle “C” Australia Allotetraploid (2n = 52) 19 G. londonderriense “C” Australia 44 G. hirsutum (Cult.) (AD) 1 America 20 G. marchantii “C” Australia 45 G. barbadense (Cult.) (AD) 2 America 21 G. exiguum “C” Australia 46 G. tomentosum (AD) 3 Hawai 22 G. rotundifolium “C” Australia 47 G. lanceolatum (AD) America 23 G. fryxellii “C” Australia 48 G. mustelinum (AD) America 24 G. binatum “C” Australia 49 G. darwinii (AD) America 25 G. nobile “C” Australia 50 G. caicoense (AD) America Source: CICR Tech. Bull. No. 5

PowerPoint Presentation:

10 Fig. 2: Global areas for explorations and germplasm collection D genome diploids C & G genome diploids B & F genome diploids E genome diploids Singh (1999)

History and Evolution:

11 History and Evolution The diploid species, G. herbaceum and G. arboreum have a long history of cultivation in the Old World. Cloth fragments, dated to 5000 B.P., have been found in the Indus Valley of Pakistan (Gulati and Turner, 1928). G. herbaceum was probably first cultivated in Arabia and Syria before finding its way to the Indian subcontinent where G. arboreum arose under cultivation. Concomitantly with its differentiation into several races, G. arboreum became the dominant species throughout Africa and Asia. Archaeological sites dated to 4500 B.P. in Peru have yielded cotton boll and fibre remains with characteristics intermediate between those of wild G. barbadense (extant in Galapagos) and primitive G. barbadense (from the same region). The wild forms of G. hirsutum are so widely dispersed (Gulf cost of Mexico, Caribbean coast of South America, Carribean Antilles and several Pacific islands) that they offer little help in locating possible centers of domestication.

PowerPoint Presentation:

12 Fig. 3: Evolution and relationships of the cultivated Gossypium spp. Phillips (1976)

Cytogenetic Investigations:

13 Cytogenetic Investigations Based on: Change in Ploidy levels Chromosomal sequence alterations Homology and/or Homoeology between genomes characterized by Chromosome pairing/Chiasma frequencies

PowerPoint Presentation:

14 No. Intergenomic Hybrids Univalents Per Cell 1 A X B 2.82 2 A X C 8.50 3 A X D 13.98 4 A X E 17.13 5 B X C 11.17 6 B X D 18.19 7 B X E 22.35 8 C X D 13.10 9 C X E 24.68 10 D X E 25.15 11 D X F 21.60 12 G X C 3.84 Case-1 : Average univalent frequencies in hybrids of diploid Gossypium spp. E genome ancient and closest to the ancestral genome of the Gossypium C and D genomes evolved in intermediate age, where D > C A and B genomes originated very recently; they are closely related; B > A F genome is of more recent origin same as A & B genomes C and G genomes are more related Endrizzi et al. (1985)

PowerPoint Presentation:

15 Chromosome No. G. herbaceum G. arboreum Allotetraploids 1 2 3 4 5 1 2 3 4 5 6 7 8 9 10 1 3 2 4 5 6 7 8 9 10 1 2 3 5 4 6 7 9 8 10 1 4 3 3 6 5 4 7 10 9 8 7 10 9 8 3 2 4 5 6 1 Case-2 : Chromosome end arrangements for the first five chromosomes of the A genomes of G. herbaceum, G. arboreum and Allotetraploids Menzel and Brown (1954)

PowerPoint Presentation:

16 Case-3 : Incipient genome differentiation for D genome chromosomes between G. hirsutum (AD) and G. harknessii (D 2 - 2 ) , G. raimondii (D 5 ) and G. lobatum (D 7 ) Menzel et al. (1978) Two type of crosses: ‘A’ genome monosomes ( G. hirsutum ) X Homozygous translocation lines ( G. hirsutum ) as Control Homozygous translocation lines (Chromo. 14, 15, 16, 19 and 20) X harknessii, raimondii and lobatum Questions: Total genome affinity (Genome Affinity Index) GAI = Mean No. of groups of paired chromosomes Base chromosome numbers (13) Affinity at specific chromosome regions [Chiasma freq. at (a) Unbroken arm, (b) Translocated region and (e) Interstitial region]

PowerPoint Presentation:

17

PowerPoint Presentation:

18 Summary of chromosome pairing in triploid hybrids and controls in crosses between A-D homozygous translocation lines and appropriate monosomic lines TT Line D Chromo. Other Parent Mean frequency per cell of Mean pairs D chiasmate arms per PMC GAI I II III AZ-7 H6L - H14L H14 Haplo-H6 D 5 12.14 11.99 0.96 25.12 0.996 D 7 13.93 11.58 0.63 21.02 0.939 2B-1 H2R - H14R H14 Haplo-H2 D 5 12.89 12.68 0.24 24.72 0.993 D 2 - 2 13.82 11.89 0.46 21.86 0.950 D 7 14.43 11.86 0.27 20.42 0.933 1040 H4R - H15L H15 Haplo-H4 D 5 12.41 12.24 0.71 24.32 0.996 D 2 - 2 12.42 11.34 1.27 22.64 0.970 D 7 14.55 11.48 0.49 19.44 0.920 4672 H1R - H16R H16 Haplo-H1 D 5 11.99 11.89 1.06 26.02 0.996 D 7 16.63 10.76 0.41 17.30 0.859 E20-7 H3L - H19L H19 Haplo-H3 D 5 12.75 12.89 0.15 25.70 1.003 D 7 14.21 11.76 0.34 19.64 0.930 10-5ka H4L - H19R H19 Haplo-H4 D 5 12.35 12.25 0.72 25.14 0.997 D 2 - 2 13.14 11.81 0.70 21.98 0.962 D 7 14.79 11.57 0.35 19.70 0.916 4669 H1L – H20R H20 Haplo-H1 D 5 12.25 12.04 0.89 24.95 0.994 D 7 17.04 10.41 0.38 16.54 0.830 The order of relationships found was D 5 > D 2 - 2 > D 7 to D h

PowerPoint Presentation:

19 Chiasma frequencies at 15 specific positions in 2n – 1 and (AD) 1 D 5 translocation heterozygotes TT Line Cyto-type Chrom-osome Chiasma freq. at the following positions a (unbroken arm) b (translocated region) e (interstitial region) Arm X ma freq. Arm X ma freq. Arm X ma freq. 2B-1 H2-H14 2n – 1 H14 L 0.9803 R 0.0156 R 0.9294 (AD) 1 D 5 0.9902 0.0032 0.9055 4672 H1-H16 2n – 1 H16 L 1.0000 R 0.9811 R 0.9803 (AD) 1 D 5 0.9816 0.7938 0.8428 * E20-7 H3-H19 2n – 1 H19 R 0.9782 L 0.0217 L 0.9130 (AD) 1 D 5 0.9444 0.0111 0.9777 10-5ka H4-H19 2n – 1 H19 L 0.9406 R 0.9809 R 0.6206 (AD) 1 D 5 0.7200 ** 0.8355 ** 0.3655 4669 H1-H20 2n – 1 H20 L 0.9805 R 0.9559 R 0.0259 (AD) 1 D 5 0.9818 0.9745 0.0381 The differentiation was significant at only 3 positions lower than those of controls which confirms the previous results of GAI i.e. D 5 > D 2 - 2 > D 7 to D h

PowerPoint Presentation:

20 Case-4 : Incipient genome differentiation for A genome chromosomes in G. hirsutum (AD) and Asiatic diploids Menzel et al. (1982) The Study: Chiasma frequencies in triploid hybrids of genome constitution (AD)A involving G. hirsutum (AD), G. herbaceum (A 1 ) and G. arboreum (A 2 ) Six different translocation lines involving chromosomes 6, 7, 10, 11, 12 and 13 of the A h genome were used to mark specific chromosome regions in hybrids and controls Questions: Has any divergence in meiotic homology occurred between the A h genome and A 1 or A 2 ? Differentiation is generalized or localized?

PowerPoint Presentation:

21 Means and Standard Deviations for the total number of chiasmate II-arm per PMC in A2N, 2(AD) 1 tt and Tt controls and in (AD) 1 A triploids Other Parent (Species) Statistic G. arboreum (A 2 ) 13 II A2N G. hirsutum (AD) 1 TM-1 Z9-9 6L-10R 1052 7R-11R 1043 7L-12R 2785 10R-11R 6-5M 11R-12L TM-1 hirsutum II arms - 25.69 25.77 25.62 25.56 25.75 25.57 S. D. - 0.59 0.43 0.64 0.80 0.56 0.69 A1A herbaceum II arms - 25.17 24.65 24.74 25.27 25.07 25.05 S. D. - 0.91 1.10 1.03 0.93 1.22 1.02 A1J herbaceum II arms - 24.89 24.47 24.26 24.77 25.08 25.10 S. D. - 1.05 1.19 1.37 1.09 0.97 1.00 A2N arboreum II arms 25.35 24.30 23.85 24.11 24.31 24.71 24.33 S. D. 0.79 1.31 1.35 1.48 1.10 1.01 1.31 No significant differences of A genome of G. hirsutum with A genomes of G. herbaceum or G. arboreum Slightly lower frequencies in hybrids as compared to controls  A h slightly differentiated from the A 1 and A 2 genomes No localized differences were observed

Molecular Investigations:

22 Molecular Investigations Based on: Isozymes Restriction Fragment Length Polymorphisms (RFLPs) Chloroplast DNA (cpDNA) Mitochondrial DNA (mtDNA) Single Copy Nuclear DNA Repetitive DNA Hahn and Grifo (1996)

PowerPoint Presentation:

23 Case-1 : Genetic diversity and evolution of Old World Cultivated Cottons as revealed by Isozyme/Allozyme Analysis Wendel et al. (1989) Old world cultivated cotton group G. arboreum G. herbaceum Methodology: 103 accessions of G. arboreum + 31 accessions of G. herbaceum subjected to isozyme analysis 20 enzyme systems examined  13 enzyme systems (19 loci with 42 alleles) found polymorphic (Uniqueness of loci as well as alleles studied)

PowerPoint Presentation:

24 Gene frequencies at 19 polymorphic loci in A genome diploid Gossypium Loci Allele G. arboreum G. herbaceum Loci Allele G. arboreum G. herbaceum 1 Ast2-2 0.00 0.03 11 Pgd1-6 0.15 1.00 4 1.00 0.97 8 0.80 0.00 2 Aco1-1 0.00 1.00 9 0.05 0.00 4 1.00 0.00 12 Pgd2-1 1.00 0.00 3 Adh2-4 0.57 0.01 4 0.00 1.00 6 0.43 0.99 13 Pgd3-2 0.00 0.07 4 Arg1-3 0.30 0.93 4 1.00 0.93 4 0.69 0.07 14 Pgm1-4 0.00 1.00 6 0.01 0.00 5 1.00 0.00 5 Enp1-4 0.42 0.93 15 Pgm3-2 0.01 0.00 5 0.58 0.07 4 0.96 0.71 6 Idh1-4 1.00 0.97 6 0.03 0.29 6 0.00 0.03 16 Skd1-4 0.86 1.00 7 Leu1-2 0.02 0.93 6 0.14 0.00 4 0.95 0.07 17 Tpi1-4 0.04 1.00 6 0.03 0.00 5 0.96 0.00 8 Mdh1-4 1.00 0.07 18 Tpi2-4 0.12 0.00 6 0.00 0.93 5 0.88 1.00 9 Mdh5-4 0.91 0.00 19 Tpi4-4 1.00 0.23 6 0.09 1.00 n 0.00 0.77 10 Nad1-1 0.02 1.00 4 0.98 0.00 Out of 19 loci , both are fixed at 3 and nearly fixed at 5 additional loci; Thus, both are clearly delimitated by isozyme constitution; Genetic Identity Estimate = 0.74 (Nei, 1987) Out of 42 alleles , 13  G. arboreum , 8  G. herbaceum and 21 shared by both

PowerPoint Presentation:

25 Out of 19 polymorphic loci, G. arboreum and G. herbaceum are: Fixed for different alleles at 3 loci and nearly fixed at 5 additional loci Based on these isozyme studies + Previously documented cytogenetic evidences G. arboreum and G. herbaceum were domesticated independently due to fixation of large no. of loci and high level of allelic novelty Existence of wild G. herbaceum in Africa Widely separated geographic centers of diversity Genetic incompatibility as revealed by F 2 breakdown in interspecific crosses Reciprocal translocation differences between two species Out of 42 alleles of these 19 loci: 8 unique to G. herbaceum 13 restricted to G. arboreum 21 shared by both

PowerPoint Presentation:

26 Case-2 : Restriction site mutations in cpDNA of Old World diploids, 5 Allotetraploids and 10 New World diploids Wendel (1989) Old world diploids G. herbaceum G. arboreum Allotetraploids G. hirsutum G. barbadense G. tomentosum G. mustelinum G. darwinii New world diploids G. thurberi G. armourianum G. harknessii G. davidsonii G. klotzschianum G. aridum G. raimondii G. gossypioides G. trilobum G. turneri Confirmation of strict maternal inheritance of cpDNA Synthetic allotetraploids and their respective parents were studied for cpDNA restriction site mutations Out of 78 restriction site mutations observed: 38  subsets of D genome diploid species (Within D genome) 30  unified Old World and New World cottons & differentiated D genome from both of them

PowerPoint Presentation:

27 hybridization and polyploidization events that led to the evolution of tetraploid cotton were relatively recent i.e. 1.1 to 1.9 MYA (million years ago) divergence time of 6 to 11 MYA of A and D genomes is supposed from their respective parental lineages female parent of initial intergenomic hybridization was very similar to present day G. arboreum and G. herbaceum

PowerPoint Presentation:

28 Case-3: Analysis of DNA polymorphism in G. hirsutum, G. herbaceum and G. raimondii by RFLPs Reinisch et al. (1994) Homologous and homoeologous probes: Mapped Pst I-genomic probes from A, D and AD genomes Screened cDNA Not I-genomic probes from G. hirsutum Genomic DNA from all three genomes were digested using Eco RI

PowerPoint Presentation:

29 Sequence duplications in diploid and tetraploid Gossypium genomes has occurred Low copy DNA sequences in the A, D and AD genomes have not diverged extensively, as Pst- I digested genomic probes from each source showed only small differences in detection of genomic fragments across the different genomes Hybridization of homologous and homoeologous cotton DNA probes to Eco RI-digested genomic DNA from A, D and AD genome cottons Source of DNA probe A. Number of restriction fragments hybridizing to genomic DNA from different genomes. Source of genomic DNA A D AD Total A genome Pst I fragments 157 155 187 499 D genome Pst I fragments 178 161 232 571 AD genome Pst I fragments 149 126 226 501 AD genome cDNAs 167 154 262 583 Total 651 596 907 2154 Average per DNA probe 2.96 2.71 4.12 ---

PowerPoint Presentation:

30 Case-4: Bidirectional interlocus concerted evolution following allopolyploid speciation of r-DNA Wendel et al. (1995) Reported on r-DNA evolution in 5 Allopolyploids (AD genomes), species representing their diploid progenitors (A and D genomes) and one of distantly related species (C genome) Sequence data from the internal transcribed spacer regions (ITS1 & ITS2) and the 5.8S gene

PowerPoint Presentation:

31 Arrays are homogenous, or nearly so, in all diploids and allopolyploids Sequence Parsimony – interlocus concerted evolution has been bidirectional in allopolyploid species (non-monophyletic) under the evolutionary forces. Sequence Evolution occurred subsequent to hybridization and allopolyploidization Organismal tree Parsimony (gene) tree of r-DNA ITS sequences in Gossypium D genome Clade A genome Clade

PowerPoint Presentation:

32 Case-5: Evolution of interspersed repetitive elements in Gossypium as revealed by FISH analysis Hanson et al. (1998) Probe Copy no. % Haploid genome Subgenome specificity pXP004 100 000 2 AD pXP006 70 000 1.4 AD pXP007 NA NA AD pXP018 60 000 1.4 AD pXP020 100 000 1.7 AD pXP024 75 000 1.3 AD pXP027 NA NA AD pXP033 50 000 1.1 AD pXP060 NA NA AD pXP067 30 000 0.8 AD pXP072 100 000 1 AD pXP095 50 000 0.6 A pXP128 10 000 0.3 A pXP137 60 000 1.3 A pXP167 50 000 0.7 AD pXP224 80 000 1 AD pXP271 90 000 2.1 AD pXP2-12 15 000 0.5 AD pXP2-27 20 000 0.6 AD pXP2-81 15 000 0.3 AD 20 repetitive elements were used as probes for FISH collectively representing >17% of the G. hirsutum genome. Initially hybridized to G. hirsutum chromosomes Further selected 8 elements used for FISH analysis with: G. arboreum (A 2 ) G. raimondii (D 5 ) and/or Synthetic diploid (A 2 D 5 ) Compared with FISH signals of G. hirsutum

PowerPoint Presentation:

33 G. hirsutum Synthetic Diploid (A 2 D 5 ) pXP004 pXP018 A genome non-specific

PowerPoint Presentation:

34 G. hirsutum Synthetic Diploid (A 2 D 5 ) pXP128 pXP137 G. hirsutum G. arboreum (A 2 ) G. raimondii (D 5 ) A genome specific

PowerPoint Presentation:

35 Based on: It was expected that there would be significant qualitative differences in repetitive DNA between the A and D sub-genomes as A and D diploid ancestors of G. hirsutum diverged from a common ancestor prior to polyploidization. But only 3, out of 20, elements were sub-genome specific in G. hirsutum , which was unexpected. Ultimately, two subgenome (A 2 genome) specific probes gave FISH signals from G. arboreum , A 2 genome of the synthetic diploid and G. hirsutum , While no signals from G. raimondii. Idea of Inter-subgenomic Concerted Evolution of elements: The 17 subgenome-nonspecific elements are of A-genomic origin and Subsequent to polyploidization A-genomic elements have “infected” the D-subgenome

PowerPoint Presentation:

36 Case-6: Analysis of nuclear and chloroplast genes to resolve the diversification of Cotton genus Cronn et al. (2002) Phylogenetic relationship derived using DNA sequences from: 11 single copy nuclear loci rDNA and 4 cpDNA loci

PowerPoint Presentation:

37 Small et al. (1999)

PowerPoint Presentation:

38 Based on the sequence data: Separation of Gossypium (as diploids), Gossypoides kirkii and Kokia drynaroides occurred appox. 13.4 MYA The D genome of Gossypium diverged from all other Cottons approx. 6.8 MYA Lineages comprising A, B, E, F and G genomes share a common history of 1 MY Cotton genome groups radiated in rapid succession after formation of the genus (in 17% of the time since the separation of Gossypium from its nearest extant relatives)

Morphological Diversity in Cultivated Species:

39 Morphological Diversity in Cultivated Species

Gossypium herbaceum:

40 Gossypium herbaceum Flowers: Yellow with pigmented base Bolls: Round, pointed and smooth surface without blackspots Lint: White, brown or ash colored Squares: Horizontally extended, round or triangular Leaf lobes: Less deep with shriveled base Shorter stamens

Gossypium arboreum:

41 Gossypium arboreum Flowers: Yellow, white or reddish colored Leaves: Okra type or Deep leaf lobes Squares: Vertically extended, triangular, less tips and covers buds and flowers almost completely Longer stamens Bolls: Tapering, Blackspotted with uneven surface

Gossypium hirsutum:

42 Gossypium hirsutum Leaves: Larger, heartshaped or triangular with less deep leaf lobes Lint: White, brown or dark brown Bolls: Round, pointed and less blackspotted Squares: Vertically extended and heartshaped

Gossypium barbadense:

43 Gossypium barbadense Leaf lobes: Deep with folded base Squares: Vertically as well as horizontally extended with heart shape and narrow tips Bolls: Longer, wide at base and pointed at tip with rough surface and black spots

PowerPoint Presentation:

44 Singh (1999)

PowerPoint Presentation:

45 9 Singh (1999)

PowerPoint Presentation:

46 Table 2: Characters of Breeding Value found in different Species No. Characters of Breeding Value Species I. Donors for Fibre Quality 1 Fibre length G. anomalum , G. stocksii, G. raimondii , G. areysianum, G. longicalyx 2 Fibre strength and elongation G. stocksii, G. areysianum, G. thurberi, G. anomalum, G. sturtianum, G. raimondii, G. longicalyx 3 Fibre fineness G. anomalum, G. raimondii, G. longicalyx 4 Fibre yield G. anomalum, G. sturtianum, G. australe, G. stocksii, G. areysianum 5 High ginning G. australe II. Donors for Resistance to Insect Pests 1 Bollworms G. thurberi, G. anomalum , G. raimondii, G. armourianum , G. somalense 2 Helicoverpa G. somalense 3 Jassids G. anomalum, G. raimondii, G. armourianum, G. tomentosum 4 Whitefly G. armourianum 5 Mites G. anomalum 6 Aphids G. davidsonii III. Donors for Resistance to Diseases 1 Bacterial Blight G. anomalum , G. raimondii , G. armourianum 2 Verticillium Wilt G. hirsutum race mexicanum var. nervosum, G. harknessii 3 Fusarium Wilt G. sturtianum , G. harknessii , G. thurberi 4 Nematode G. darwinii IV. Donors for other Characters 1 Cytoplasmic male sterility G. harknessii , G. aridum , G. trilobum 2 Drought resistance G. aridum , G. darwinii, G. tomentosum, G. stocksii, G. areysianum, G. anomalum, G. australe, G. harknessii , G. raimondii 3 Frost resistance G. thurberi 4 Delayed morphogenesis of gossypol gland G. australe , G. bickii Source: CICR Tech. Bull. No. 5

PowerPoint Presentation:

47 Table 3: Extent of variability in germplasm vs standard cultivars for agricultural, trade and industrial attributes in India Characters G. hirsutum G. barbadense G. arboreum G. herbaceum GP LRA 5166 GP Suvin GP AKH.4 GP G.Cot.11 Seed cotton yield (g/pl) 300 126 140 48 160 67 107 75 Boll per plant 65 42 49 18 55 21 77 30 Boll weight (g) 7.3 3.8 3.5 3.0 5.5 2.9 2.6 2.2 Seeds per boll 37 28 29 27 48 28 24 24 Seed index (dg) 150 80 117 85 86 73 77 70 Ginning out-turn (%) 44 36 33 29 41 37 44 38 Span length (mm) 37 27 40 34 27 24 27 25 Uniformity ratio (%) 52 48 52 45 54 44 52 46 Micronaire value (mv) 5.6 4.0 4.2 3.2 8.0 4.5 6.2 4 Maturity of fiber (%) 79 76 88 79 93 80 79 79 Fiber strength (g/tex) 56 48 58 49 59 51 58 51 Spinning counts (HSC) 70 40 120 100 40 30 40 36 Seed oil percentage 28 20 30 26 23 18 20 16 Seed oil index (g) 2.1 1.6 3.1 2.4 1.8 1.1 1.7 1 Non-economic yield Biomass (g/pl) 520 160 320 185 360 163 240 152 GP = Germplasm (Best limit) Singh (1999)

PowerPoint Presentation:

48 Table 4: Variability in germplasm for mutations in qualitative characters in cultivated species of Gossypium Plant parts G. hirsutum G. barbadense G. arboreum G. herbaceum Stem glandless, red, hairy, short sympodia, zero branch pubescent, dwarf short branch, dwarf early, glandless, smooth bushy dwarf, glabrous, green short branch, bushy dwarf Leaf curly, cup, glandless, okra, super okra, red, pubescent, hairy, smooth mosaic, round, yellow veins, fused veins, nectariless wrinkled, rugate, okra crinkled, glabrous, narrow, broad, laciniate, sintle lobed, nectariless, red vein curly, crumpled, hairy, stellate hairs, glabrous, red Bracts Caduceus, frego, accessory frego Frego type, entire multibracteole Flower Cleistogamy, male sterile, indehiscent anthers, open bud, buff pollen, yellow pollen, cream pollen, orange yellow pollen, petal spotted, ghost spotted, club stigma style, sunken stigma, nectariless Cleistogamous, semigametic, fertility enhancer, male sterile, cream, white Petalody, pistillate, sunred spot, thumbnail red, red margin, ghost spot, male sterile, yellow petal, pale and white petals, Chinese yellow petal Spotless, ghost spot, male sterile, yellow petal, pale yellow petal, Chinese yellow and pale petals Bolls Cluster, glandless, hairy Smooth, cluster, glandless Partial dehiscence, few loculed, fused, big long, retentive loculi Closed, big Seed Naked, fuzzy, coloured fuzz naked Tufted, naked Semi fuzzy Lint Brown, green, khaki, lintless Cream, white Lentless, short, sparse, khaki, white, brown Coloured , lintless , hairy Singh (1999)

Milestones in Cotton Improvement:

49 Milestones in Cotton Improvement

PowerPoint Presentation:

50 North Zone Central Zone South Zone Punjab Haryana Rajasthan Western U. P. M. P. Maharashtra Gujarat A. P. Karnataka Tamil Nadu

PowerPoint Presentation:

51

PowerPoint Presentation:

52 Gaorani - 6 1027 - A LF Dharwar American 265 Deviraj 170 – Co – 2 (1951) Devitej 134 – Co – 2 (1952) G. arboreum G. hirsutum G. herbaceum BC to G. hirsutum BC to G. hirsutum

PowerPoint Presentation:

53 Introgressions made at Main Cotton Research Centre, Surat.

PowerPoint Presentation:

54

PowerPoint Presentation:

55 World’s first cotton hybrid – Hybrid 4

PowerPoint Presentation:

56 Table 5: Cotton varieties and hybrids developed through interspecific hybridization Centre Species involved Cultivars released A. Varieties JNKVV, Indore G. hirsutum X G. tomentosum Badnawar 1, Khandwa 1, Khandwa 2 GAU, Surat G. hirsutum X G. arboreum SRT.1, Deviraj (170-Co.2), G.67 G. hirsutum X G. herbaceum Devitej (134-Co.2-M) TNAU, Coimbatore G. hirsutum X G. barbadense MCU.2, MCU.5 PKV, Akola G. hirsutum X G. anomalum PKV.081 G. hirsutum (G. thurberi X G. anomalum) Rajat G. arboreum X G. anomalum AKA.8401 CICR, Nagpur G. hirsutum X G. anomalum Arogya B. Hybrids UAS, Dharwad G. hirsutum X G. barbadense Varalaxmi, DCH.32 (Jayalaxmi), DHB.105 G. herbaceum X G. arboreum DDH.2 GAU, Surat G. herbaceum X G. arboreum DH.7, DH.9 MAHYCO, Jalna G. herbaceum X G. arboreum MDCH.201 MAU, Nanded G. hirsutum X G. barbadense NHB.12 TNAU, Coimbatore G. hirsutum X G. barbadense TCHB.213 CICR, Coimbatore G. hirsutum X G. barbadense HB.224, Sruthi Singh and Narayanan (1999)

Conclusion:

57 Conclusion Gossypium and their nearest relatives ( Gossypoides and Kokia ) diverged from their common ancestors about 13.4 MYA. Divergence of A and D genomes from their parental lineages occurred about 6 to 8 MYA. Allotetraploid cottons evolved approximately 1.1 to 1.9 MYA as a result of hybridization between their diploid ancestors followed by polyploidization events. The maternal parent involved in the evolution of allotetraploids was ‘A’ genome donor (i.e. similar to the present day old world cottons). Cotton genome groups radiated in rapid succession after formation of the genus. Great variability exits in the genus which has been successfully exploited by introgression breeding. These introgressions led to considerable improvement in productivity, fibre quality and biotic and abiotic stress resistance.

Future Prospects:

58 Future Prospects Radiation of species other than cultivated species and their ancestors in each genome group should be investigated as this is an unexplored area of research in cotton evolution. In spite of considerable improvement efforts in cotton, there are certain wild relatives untouched, which may help in further improvements. Transgenic cottons have been proven as one of the successful crops for large scale cultivation. Thus, the fate of the transgenic cottons should be further considered from the evolution point of view.

PowerPoint Presentation:

59 Thank You

authorStream Live Help