Maize breeding quality

Views:
 
Category: Education
     
 

Presentation Description

No description available.

Comments

Presentation Transcript

PowerPoint Presentation:

1 BREEDING MAIZE FOR VALUE ADDITION

CONTENT:

2 CONTENT Introduction ,Origin & Taxonomy Area ,Production and Productivity Kernel Anatomy and Value Addition Traits Breeding for * Quality Protein Maize * High Oil and Starch * Sweet Corn * Pop Corn Conclusion Future Thrust

PowerPoint Presentation:

3 Importance of Maize Top ranking cereal in terms of productivity and production globally Highest potential of carbohydrate production per unit/day Great significance as human food, animal feed and industrial products Grown in unmatched diversity of environments Queen of cereals

Table -1: Area, Production and Productivity of Maize during 2003-04:

4 Table - 1: Area, Production and Productivity of Maize during 2003-04 State Area (m.ha) Production (m.tons) Productivity (kg/ha) Rajasthan 1.110 2.069 1863 Uttar Pradesh 0.947 1.318 1392 Madhya Pradesh 0.901 1.853 2055 Andhra Pradesh 0.721 2.477 3436 Karnataka 0.618 1.244 2013 Bihar 0.606 1.440 2374 Gujarat 0.484(VII) 0.832(VI) 1717(VI) Other States 1.933 3.697 1913 India 7.320 14.930 2040 World 137.5 702.0 5105 New Delhi Anonymous(2005)

ORIGIN AND TAXONOMICAL STATUS OF CULTIVATED MAIZE :

5 ORIGIN AND TAXONOMICAL STATUS OF CULTIVATED MAIZE Maize, Teosinte and Tripsacum descended from a common extinct ancestor native to highlands of Mexico or Guatemala (Weatherwax , 1955). Taxonomy : Tribe – Maydeae Family – Poaceae Genus – Zea Species – Zea mays ( L ) Ploidy level (Chromosome Number) : Randolph (1928) and Mc Clintock (1929 b) Teosinte (Weedy) Maize (Cultivated) * Zea mexicana (2n = 20) * Zea mays (2n = 20) * Zea perennis (2n = 40) * Zea luxurians (2n = 20) * Zea diploperennis (2n = 20) Teosinte x Maize (Cross compatible)

Table-2 : Genes for Value Addition Traits in Maize:

6 Table -2 : Genes for Value Addition Traits in Maize Trait Gene Chromosome Number Linkage Group Authority Starch : Floury endosperm-1 fl 1 2 2 Hayes and East,1915 (B) Quality Protein Maize : Opaque endosperm-2 o 2 7 7 Singleton and Jones (1935) Mertz, Bates and Nelson (1964) (C) Sweet Corn : Sugary endosperm-1 Sugary endosperm-2 Sugary endosperm-3 Shrunken endosperm su 1 su 2 su 3 sh 4 6 9 9 4 6 9 9 Correns,1901;East and Hayes,1911 Eyster, 1934 b Eyster Hutchison,1921 (D) Pop Corn : pe 2 2 Brunson,1931 (E) Baby Corn : Tassel seed Silk restorers for the Silkless ts2 & ts1 sk 1 and 2 resply. 2 1 & 2 2 Walton C. Galinat (F) High Oil Corn oy 5 5 Eyster,1933 a

PowerPoint Presentation:

7 Figure - 1: Anatomy of Maize Kernel (C) Electron micrograph of a developing maize endosperm cell (D) Endosperm at 19 days after pollination USA Geetha, et al. (1991)

PowerPoint Presentation:

8 QUALITY PROTEIN MAIZE

PowerPoint Presentation:

9 QPM contains opaque-2 mutation . Alters protein composition of the maize endosperm - increased concentrations (60 to 100%) of lysine and tryptophan ( Mertz et al. ,1964 ). Increased digestibility and nitrogen uptake relative to normal-endosperm maize . Biological value of QPM is about 80%, when compared with normal maize - 40 to 57% ( Bressani,1992 ). QPM has about 90% the biological value of cow milk ( Anonymous,1988 ). Malnutrition in children can be alleviated . Alternative feed rations for swine, poultry and fish where conventional sources of lysine, generally soybean meal or synthetic lysine( Lopez et al., 1992 ). Among the cereals, Opaque- 2 maize contains 96.8% protein quality.

PowerPoint Presentation:

10 Maize Kernel Pericarp (6%) Endosperm (82%) Germ (12 %) Storage protein (Zeins) Non storage protein Other (phytins, oils, carotenoids, polysaccharides, free amino acids) Albumin Globulin Glutelins     New Delhi Prasanna (2001)

Table -3: CIMMYT QPM Gene Pools and Their Characteristics:

11 Table -3: CIMMYT QPM Gene Pools and Their Characteristics QPM Pool No. Adaptation Maturity Seed Colour Seed Texture Kernel Quality Characteristics(%) Quality Index Protein Lysine Trypto-phane Pool 15QPM Tropical Early White Flint-Dent 9.1 4.2 0.94 4.6 Pool 17 QPM Tropical Early Yellow Flint 8.9 4.5 1.04 4.5 Pool 18 QPM Tropical Early Yellow Dent 9.9 4.0 0.93 4.6 Pool 23 QPM Tropical Late White Flint 9.1 3.8 1.03 4.2 Pool 24 QPM Tropical Late White Dent 9.4 3.8 0.92 4.0 Pool 25 QPM Tropical Late Yellow Flint 9.8 4.0 0.94 4.0 Pool 26 QPM Tropical Late Yellow Dent 9.5 4.1 0.90 4.3 Pool 27 QPM Subtropical Early White Flint-Dent 9.5 4.2 1.05 4.8 Pool 29 QPM Subtropical Early Yellow Flint-Dent 9.2 4.3 1.06 4.8 Pool 31 QPM Subtropical Medium White Flint 10.2 4.1 0.96 4.5 Pool 32 QPM Subtropical Medium White Dent 8.9 4.2 1.04 4.5 Pool 33 QPM Subtropical Medium Yellow Flint 9.3 - 1.05 4.2 Pool 34 QPM Subtropical Medium Yellow Dent 9.1 4.1 1.10 4.5 New Delhi Prasanna et al. (2001)

Table - 4: Genetic Pool or Population of Origin and Level of Inbreeding for Parent Lines included in Four Diallel Trials:

12 Table - 4: Genetic Pool or Population of Origin and Level of Inbreeding for Parent Lines included in Four Diallel Trials Parent Diallel 1 Diallel 2 Diallel 3 Diallel 4 1 P 62-S5(155) Pop. P62-S6 P62-S6 c (142) P62-S9 2 P63-S6 a P63-S6 P62-S9 (156) P62-S8 c (142) 3 AC8363-S4 P63-S6 P63-S8 P62-S6 (143) 4 P64-S3 P63-S6 a P63-S8 a P62-S7 (141) 5 PL23QS4 AC8363-S4 AC8563-S7 d (146) P62-S6 (144) 6 PL24Q-S5 PL23Q-S5 P64-S6 AC8563-S8 d (146) 7 PL24Q-S5 PL24Q-S5 b (149) PL23Q-S7 (148) P63-S6 8 PL24Q-S5 PL23Q-S6 P63-S6 (147) 9 PL24Q-S8 b (149) PL24Q-S9 e (150) 10 PL24Q-S7 e (150) CIMMYT, Mexico Pixley et al. (1993)

Table - 5: Mean of QPM Crosses and Best Normal Check for Grain Yield , Protein Concentration in Grain , Tryptophan Concentration in Grain and Tryptophan Concentration in Protein for across Location Analyses of four Diallel Trials.:

13 Table - 5: Mean of QPM Crosses and Best Normal Check for Grain Yield , Protein Concentration in Grain , Tryptophan Concentration in Grain and Tryptophan Concentration in Protein for across Location Analyses of four Diallel Trials. Diallel Entry Grain Yield (t/ha) Protein in Grain (g/kg) Tryptophan in Grain (g/kg) Tryptophan in Protein (g/kg) 1 Mean QPM Best QPM Best Check LSD (0.05) 6.06 ** 6.87 6.66 0.83 92** 103 108 6 0.86** 0.95 0.65 0.07 9.4* 10.1 6.6 0.6 2 Mean QPM Best QPM Best Check LSD (0.05) 6.25** 7.55 6.97 1.20 82 91 92 9 0.80 0.88 0.64 0.08 9.8** 10.5 7.0 0.7 3 Mean QPM Best QPM Best Check LSD (0.05) 7.01** 7.87 6.80 1.07 80** 94 91 9 0.74 0.81 0.58 0.10 9.3** 10.3 6.3 1.2 4 Mean QPM Best QPM Best Check LSD (0.05) 6.53 7.02 5.53 (NS) 89** 102 103 9 0.76** 0.87 0.52 0.07 8.6* 9.2 5.3 0.7 CIMMYT, Mexico Pixley et al. (1993)

Table - 6: Estimates of General Combining Ability Effects for Protein Concentration in Grain for Parents of Three Diallel Trials:

14 Table - 6: Estimates of General Combining Ability Effects for Protein Concentration in Grain for Parents of Three Diallel Trials Parent Diallel 1 Diallel 3 Diallel 4 1 -0.82 0.45 2.78** 2 -2.93** 3.83** 1.89* 3 -1.71* -1.65 5.50** 4 -5.32** 0.66 -2.73** 5 8.65** -3.21** 2.85** 6 1.82** -2.19** -5.11** 7 -2.93** -2.90** -1.20 8 3.24** 7.48** 2.46** 9 -0.38 -6.44** 10 -2.09* * ,** Significant at P < 0.05 and P < 0.01, respectively CIMMYT, Mexico Pixley et al. (1993)

Table- 7 : Estimates of General Combining Ability Effects for Tryptophan Concentration in Protein for Parents of Three Diallel Trials:

15 Table - 7 : Estimates of General Combining Ability Effects for Tryptophan Concentration in Protein for Parents of Three Diallel Trials Parent Diallel 1 Diallel 2 Diallel 3 1 0.167 -0.253** 0.089 2 0.197* -0.096 -0.211* 3 -0.036 0.210* 0.199* 4 0.175* 0.180* -0.140 5 -0.147 0.334** 0.695** 6 -0.089 0.014 0.095 7 0.169 -0.390** 0.149 8 -0.436** -0.647** 9 -0.215* 10 -0.013 * ,** Significant at P < 0.05 and P < 0.01, respectively CIMMYT, Mexico Pixley et al. (1993)

Table-8 : Phenotypic Correlation Coefficients Among Protein Concentration in Grain , Tryptophan Concentration in Protein and Grain Yield for Hybrids of Four Diallel Trials:

16 Table -8 : Phenotypic Correlation Coefficients Among Protein Concentration in Grain , Tryptophan Concentration in Protein and Grain Yield for Hybrids of Four Diallel Trials Diallel Protein in Grain Tryptophan in Grain Tryptophan in Protein Tryptophan in Grain 1 0.83** 2 0.71** 3 0.45** 4 0.84** Tryptophan in Protein 1 -0.52** 0.03 2 -0.48* 0.28 3 0.74** 0.26 4 -0.30 0.25 Grain Yield 1 -0.27 -0.32 0.00 2 0.43* 0.17 -0.36 3 -0.08 0.14 0.17 4 -0.13 -0.06 0.11 * ,** Significant at P < 0.05 and P < 0.01, respectively CIMMYT, Mexico Pixley et al. (1993)

Table-9 : Performance of Some Superior CIMMYT QPM Hybrids in International Trials:

17 Table -9 : Performance of Some Superior CIMMYT QPM Hybrids in International Trials Pedigree Yield(t/ha) Days to Silking Endosperm Hardness * Tryptophan Content Ear rot (%) A. Group-I: White QPM hybrids tested across 15 international locations (1998) CML-142 X CML-146 6.48 55 2.0 1.00 3.7 CML-159 X CML-144 6.39 56 1.6 1.00 4.3 CML-145 X CML-144 5.81 54 2.0 0.84 5.8 CML-158 X CML-144 5.59 55 1.3 1.00 7.1 CML-146 X CML-150 5.48 56 3.6 0.80 8.7 National hybrid check 5.58 56 2.0 0.70 9.5 B. Group-II: Subtropical QPM hybrids across 23 test International locations(1977-1999) CML-142 X CML-186 9.56 75 1.9 0.90 4.7 CML-176 X CML-142 9.36 80 1.7 0.90 4.9 CML-186 X CML-149 9.21 76 1.8 0.90 5.7 CML-173 X CML-142 8.99 74 1.8 1.00 4.9 National hybrid check 8.51 78 2.0 0.60 5.8 * Endosperm modification score on a scale of 1 (complete vitreous) to 5 (complete opaque) New Delhi Prasanna et al . (2001)

Table -10 :Mean performance of Hard Endosperm Maize ,Experimental Hybrids and Composites Over the Locations (Almora,Bajaura,Delhi(IARI),Luadhiana,Karnal,Hyderabad,Coimbatore,Udaipur and Banswara) During Kharif-2005:

18 Table -10 :Mean performance of Hard Endosperm Maize ,Experimental Hybrids and Composites Over the Locations ( Almora,Bajaura,Delhi(IARI),Luadhiana,Karnal,Hyderabad,Coimbatore,Udaipur and Banswara) During Kharif-2005 Sr. No. Pedigree Grain Yield (Kg/ha) Grain Yield Superiority Over Checks (%) Protein (%) Tryptophan in Protein (%) 100 Kernel Weight (gm) Specific Gravity Shakti-man-1 Shakti-man-4 1 JH(QPM)-159 4997 9.66 2.43 9.74 0.70 25.97 1.16 2 JH(QPM)-160 5101 11.93 4.55 10.73 0.65 24.23 1.17 3 BUM-7 3961 - - 8.37 0.62 28.40 1.17 4 MH QPM-05-1 4729 3.77 - 9.25 0.76 28.17 1.16 5 MH QPM-05-2 4982 9.31 2.11 10.26 0.67 25.40 1.09 6 MH QPM-05-3 4658 2.21 - 9.38 0.66 25.30 1.18 7 H.QPM-5 5214 14.40 6.87 9.55 0.82 24.37 1.17 8 H.QPM-6 5360 17.62 9.87 10.13 0.66 23.60 1.12 9 H.QPM-7 5114 12.21 4.82 9.43 0.72 24.73 1.18 10 H.QPM-1 5417 18.86 11.03 9.36 0.76 24.67 1.14 11 Shaktiman-1(C) 4557 - - 11.04 0.71 28.27 1.17 12 Shakti-1(C) 3739 - 10.04 0.71 23.60 1.17 13 Shaktiman-4(C) 4879 7.05 9.81 0.70 26.27 1.18 Mean 4824 New Delhi Anonymous (2005)

Table - 11 : Important findings on QPM improvement:

19 Table - 11 : Important findings on QPM improvement 1. Tryptophan concentration in protein was the most stable trait, followed by protein concentration in grain, then endosperm modification. Pixley and Bjarnason (2002) CIMMYT, Harare, Zimbabwe 2. opaque -2 modifiers are semi-dominant genes increases twofold to threefold gamma-zein gene expression in both opaque-2 and normal genetic backgrounds. High concentrations of gamma-zein occur in the sub-aleurone and central endosperm cells of modified opaque-2 mutants. Geetha, et al. (1991) , USA 3. The average response during the mass selection was 5.1% cycle-1 for yield, 0.8 g kg-1cycle-1 for protein concentration, and 7.0% cycle-1 for protein yield. After three cycles, the mass selection system did not appear to be particularly effective. Bletsosa and Goulasb (1999), Greece

PowerPoint Presentation:

20 F 1 families 1 st Year (A Season) 1 st Year (B Season) 2nd Year (A Season) 2nd Year (B Season) 3rd Year (A Season) 3rd Year (B Season) 4th Year (A Season) 4th Year (B Season) 5th Year (A Season) F 2 families F 3 families F 4 H.E. o 2 families F 5 H.E.o 2 BULK/Pollinate BC 1 (F 1 ) fam. F 6 H.E.o 2 Inter/Pollinate BC 1 (F 2 ) H.E.o 2 BC 1 (F 3 ) H.E.o 2 fam. BC 1 (F 4 ) H.E.o 2 fam. H.E.o 2 donor F 4 bulk BC 1 (F 4 ) Bulk Pollinate Bulk Pollinate Bulk Pollinate Tuxpe ño normal Tuxpe ño (C 1 ) Tuxpe ño (C 2 ) Repeat Steps Tuxpeño 1 C (n) Repeat Steps Tuxpeño 1 H.E.o 2 CIMMYT(Mexico) Vasal (1993) Figure-2 : Modified Back-cross cum recurrent selection scheme

PowerPoint Presentation:

21 Scored on 1-5 Scale 1 - opaque; 2 - 25% modified; 3 - 50% modified; 4- 75% modified; and 5 - 100% modified (vitreous). Figure -3 : Kernel standards (backlit) used for analyzing endosperm modification in the QPM genotypes. Kernels from each genotype

Figure - 4 : Comparison of selected high - methionine (MET) lines in A632, B73, and Mo17 genetic backgrounds. DM = dry matter:

22 Figure - 4 : Comparison of selected high - methionine (MET) lines in A632, B73, and Mo17 genetic backgrounds. DM = dry matter Madison, USA Olsen et al . (2003)

Figure – 5 : Comparison of selected high-methionine (MET) hybrids with B73/A632, B73/Mo17, and A632/Mo17. DM = dry matter:

23 Figure – 5 : Comparison of selected high-methionine (MET) hybrids with B73/A632, B73/Mo17, and A632/Mo17. DM = dry matter Madison, USA Olsen et al . (2003)

FIGURE-6 : (a) SSR Polymorphism in QPM Inbreds Using dupssr34 (b)Analysis Using phi057 (opaque2-specific SSR Marker) :

24 FIGURE -6 : (a) SSR Polymorphism in QPM Inbreds Using dupssr34 (b)Analysis Using phi057 ( opaque2 -specific SSR Marker) New Delhi Kassahun & Prasanna (2002)

FIGURE- 7 : Dendogram Depicting Genetic Relationships Among the Selected QPM Inbred Lines:

25 FIGURE - 7 : Dendogram Depicting Genetic Relationships Among the Selected QPM Inbred Lines New Delhi Kassahun & Prasanna (2002)

PowerPoint Presentation:

26 Name Type Pedigree Country HQ INTA-993 Hybrid (CML144 x CML159) CML176 Nicaragua NB-Nutrinta Open pollinated Poza Rica 8763 Nicaragua HB-PROTICTA Hybrid (CML144 x CML159) CML176 Guatemala HQ-61 Hybrid (CML144 x CML159) CML176 El Salvador HQ-31 Hybrid (CML144 x CML159) CML176 Honduras Zhongdan 9409 Hybrid Pool 33 x Temp QPM China Zhongdan 3850 Hybrid China QUIAN2609 Hybrid Tai 19/02 x CML171 China Shaktiman-1 Hybrid ( CML142 x CML150 ) CML 176 In dia Shaktiman- 2 Hybrid C ML176 x CML 186 In dia CORPOICAH112 Hybrid (CML161 x CML165) Colombia Susuma Open po l linated Across 8363SR Mozambique Obatampa* Open pollinated Across 8363SR Mali Nalongo * Open pollinated Across 8663SR Uganda Obatampa* Open pollinated Across 8363SR Benin BR-473 Open pollinated Brazil BR-451 Open pollinated Brazil Assum Preto Open pollinated Brazil Obatampa* Open pollinated Across 8363SR Burkina Faso Obatampa* Open pollinated Across 8363SR Guinea QS-7705 Hybrid South Africa GH-132-28* Hybrid P62, P63 Ghana Gabisa Hybrid ( C ML 1 44 x CML159) CML176 Ethiopia INIA Hybrid CML161 x CML165 Peru FONAIAP Hybrid (CML144 x CML159) CML176 Venezuela HQ-2000 Hybrid CML161 x CML165 Vietnam Lishe –1 Hybrid CML144xCML159)CML176 Tanzania Lishe –2 Hybrid CML144xCML159) Obatampa Tanzania H- 44IC Hybrid CML1 86 x CML142 Mexico H- 367 C Hybrid CML142 x CML150 Mexico H-553C Hybrid (CML142 x CML150) CML176 Mexico H-519C Hybrid (CML144 x CML159) CML170 Mexico H-368C Hybrid CML186 x CML149 Mexico H- 4 69C Hybrid CML176 x CML186 Mexico VS-537 C Open pollinated POZA RICA 8763 Mexico VS-538 C Open pollinated ACROSS 8762 Mexico Table - 12 : New QPM Varieties and Hybirds Released During 1996 t o 2002 . New Delhi Prasanna, et al. (2001)

PowerPoint Presentation:

27 Quality Protein Maize in farmer’s field in India (Bihar)

QUALITY PROTEIN MAIZE PRODUCTS:

28 QUALITY PROTEIN MAIZE PRODUCTS

PowerPoint Presentation:

29 HIGH OIL AND STARCH MAIZE

PowerPoint Presentation:

30 Contains a higher energy content -2.25 times more than carbohydrate (Alexander, 1988). More of the essential amino acids needed for animal growth. Increased value as an animal feed. Less dust in the feed and during grinding. Feed for broiler ,dairy cow and swine. Grain parent by not producing pollen will save energy for grain production .   Heart-Friendly Corn Oil - high Oleic acid . Keep blood cholesterol levels down or salad dressings that last longer. Tripsacum -introgressed corn - high levels of oleic acid (Pollak and Duvick ,2003 ) - monounsaturated fatty acid key to "heart-friendlier". High percentages of oleic acid give corn oil stability

Table - 13 : Important Research Findings on Improvement of High Oil Corn:

31 Table - 13 : Important Research Findings on Improvement of High Oil Corn Sr. No. Important Research Findings Scientists 1. Initiated studies on methods for increasing maize grain oil content Hopkins , University of Illinois ( 1896) 2. From 90 generations of selection , grain oil content in the Illinois High Oil population was achieved 22%, but the upper plateau from selection had not been achieved yet. Dudley and Lambert (1992) 3. Increased oil content in BSSS from 4.2% to 7%. After 62 cycles of mass selection oil content in the open-pollinated variety “Burr White ” increased from 4.7% to over 15% . After the 76th cycle , the increase amounted to 19%, i.e. , to 279% of the original population mean. Alexander (1962 & 1977) ; Dudley (1977) 4. Grain oil content increased from 5.1% to 17% in the population Alexho synthetic population after 24 cycles of phenotypic recurrent selection for high oil content. The average change in oil percent oil was 4.9%, 2.1% and 2.4% cycle-1 per se, cycles crossed to B73, and cycles crossed to R802A, respectively. Misevic et al. ( 1989). 5. Oil content increased by 120% and 97% after seven cycles of mass selection in the DS7u and YuSSSu populations , respectively. Saratlic (1994) 6. Used variation of mass selection. Oil content was increased from 4.97% to 7% or 0.41% cycle-1 during five seasons of selection. Sprague and Brimhall (1950) ; Sprague et al. (1952) 7. Top cross system uses the sterile version of a hybrid (90-95%) as a means to obtain high yield, and high-oil population (5-10%) as a pollinator. Due to the effect of xenia half of the oil content of the oil population is transferred to the sterile (female) version of the hybrid. It is possible to gain both high yield and high oil content. Edge, 1997; Lambert et al. (1997)

Table - 14 : Data from 18 Cycles of Selection for High Oil in BHO Synthetic :

32 Table - 14 : Data from 18 Cycles of Selection for High Oil in BHO Synthetic Cycle Oil (%) Selection Differentia ( X s – X ) Genetic Gain (%) Realized Heritability h 2 r S.D. C.V. Kernel Weight (mg) Protein (%) Starch (%) Mean of all Kernels ( X ) Mean of elected Kernels ( X s ) 0 4.71 5.53 0.82 - - 0.76 16.14 282.8 11.1 68.6 1 5.38 6.66 1.28 0.67 0.82 1.01 18.77 - - - 2 5.96 6.79 0.83 0.58 0.45 1.18 19.80 236.8 - - 3 6.10 7.53 1.43 0.14 0.17 1.11 18.20 - 11.0 68.3 4 7.28 8.78 1.50 1.18 0.83 1.15 15.80 242.5 12.8 63.8 5 7.96 8.88 0.92 0.68 0.45 1.08 13.50 233.9 12.2 64.3 6 8.44 9.71 1.27 0.48 0.52 1.52 18.01 260.1 12.7 63.7 7 9.26 10.96 1.70 0.82 0.65 1.85 19.98 261.3 12.8 61.8 8 9.64 11.67 2.03 0.38 0.22 1.16 12.03 265.5 13.4 62.7 9 9.55 11.03 1.48 -0.09 -0.04 1.69 17.70 250.9 15.5 59.3 10 10.52 12.51 1.99 0.97 0.66 1.87 17.78 253.6 13.6 60.9 11 11.25 12.75 1.50 0.73 0.37 1.23 10.93 245.1 14.3 57.5 12 11.79 13.00 1.21 0.54 0.36 1.06 9.79 274.7 - - 13 11.05 12.17 1.12 -0.74 -0.61 2.36 16.35 257.5 - - 14 11.39 13.73 2.34 0.34 0.30 2.09 15.13 235.0 - - 15 12.46 15.11 2.65 1.07 0.46 1.13 9.07 248.3 - - 16 13.90 16.70 2.80 1.44 0.55 1.49 10.79 248.0 - - 17 14.43 16.75 2.32 0.53 0.19 1.76 12.20 255.8 - - 18 15.55 17.73 2.18 1.12 0.48 1.62 10.42 275.3 - - Beijing, China Song et al. ( 2002 )

Table -15 : Comparison of Oil Selection Parameters of High Oil Maize Populations:

33 Table -15 : Comparison of Oil Selection Parameters of High Oil Maize Populations Population Selected Cycles (n) Oil Content(%) Genetic Gain(%) Realized Heritability h 2 r CO Cn Total Cycle BHO 18 5.58 15.53 9.95 0.55 0.34 AIHO 12 12.54 19.41 6.87 0.57 0.32 Syn.D.O. 9 7.32 16.02 8.70 0.97 0.51 RYD 11 7.68 14.00 6.32 0.57 0.27 KYHD 7 3.64 11.92 8.27 1.18 0.67 Mean 0.77 0.42 Oil % , Genetic gain % and h 2 r were predicted value. Beijing (China) Song et al . (2002)

Table -16 : Comparison of Correlation Coefficient between Oil Content , Kernel Weight,Protein,Starch and Lysine Content of High Oil Maize Populations:

34 Table -16 : Comparison of Correlation Coefficient between Oil Content , Kernel Weight,Protein,Starch and Lysine Content of High Oil Maize Populations Population Kernel Weight (mg) Protein (%) Starch (%) Lysine (%) BHO 0.10 0.82 ** -0.94** - AIHO 0.49 0.52 -0.92** - Syn.D.O. 0.13 0.73* -0.97** 0.79** R.Y.D. 0.07 0.67* 0.98** 0.87** KYHO -0.82 0.87** -0.94** 0.90** * , ** Significant at the 0.05 and 0.01 probability levels respectively Regression analysis indicated 1 % Oil increase * Protein increases by 0.25% to 0.56 % * Lysine increases by 0.01% to 0.01 to 0.015% * Starch decreases by 1.48% to 1.83% Beijing (China) Song et al. , 2002

Table -17 : General Combining Ability Effects for Grain Yield, Its Components and Oil and Protein Contents :

35 Table -17 : General Combining Ability Effects for Grain Yield, Its Components and Oil and Protein Contents Sr. No. Parent Days to 50% Taselling Days to 50% Silking Days to 50% Matu-rity Plant Height (cm) Ear Height (cm) 100 Seed Weight (g) Grain Yield per Plot (kg/ha) Oil Content (%) Protein Content (%) 1 QPM- 35 0.62 * 0.91* -0.64** -10.68** -9.82** -0.59 0.05 0.07 -0.84** 2 QPM-12 -0.72** 0.02 1.87** -7.96** -6.71** -1.42** -0.15** -0.58 0.41** 3 QPM-33 1.78** 1.04** -0.94** -4.15** -3.09** -1.82** -0.17** 0.58** -0.91** 4 QPM-23 0.20 -0.73 -1.83** -12.41** -8.64** -1.22** -0.26** -0.31** 1.03** 5 QPM-36 -0.94** -0.98** -0.39 3.99** 0.71 0.17 -0.12** -0.28** 0.41** 6 HOL-31 -0.02 0.52 -2.24** -0.85 4.62** 1.49** -0.09** 0.27** 0.17 7 AML-18 -0.11 -0.04 2.46** 15.67** 9.77** 2.00** 0.34** -0.19 -0.57** 8 M-210 -1.19** -1.46** -0.51 2.29* 4.79** -0.54 -0.02* -0.17 0.27** 9 QPM-48 -1.16** -0.85* 0.04 6.12** 3.79** 0.39 0.08* 0.48** -0.06 10 HOL-65 1.53** 1.57* 1.42** 7.97** 4.59** 1.08** 0.21** -0.23* -0.62** SE (gi) SE(gi-gj) 0.28 0.38 0.32 0.81 0.61 0.31 0.04 0.10 0.09 0.43 0.56 0.47 1.47 0.82 0.46 0.06 0.15 0.14 * ,** significant at 5% and 1% level respectively Hyderabad Sai Kumar et al . ( 2002)

Table -18 : Specific Combining Ability Effects of Top Ten Promising Hybrids for Yield and Their Corresponding Quality and Agronomic Parameters:

36 Table -18 : Specific Combining Ability Effects of Top Ten Promising Hybrids for Yield and Their Corresponding Quality and Agronomic Parameters Sr . No. Cross Combination Days to 50% Tassel-ling Days to 50% Silking Days to 50% Matu- rity Plant Height (cm) Ear Height (cm) 100 Seed Weight (gm) Grain Yield Per Plot (kg) Oil Con-tent (%) Protein Con- tent (%) 1 QPM-35 x AML-18 -0.69 1.42 2.81** 13.27** -8.19** 2.11* 0.49* 1.05** -0.31 2 QPM-35 x QPM-48 0.70 0.38 4.18** 12.89** 8.16** -0.97 0.44* 0.93** -0.09 3 QPM-12 x QPM-36 -1.52 0.08 1.58 13.48** 6.83** 0.17 0.60** 1.41** 0.03 4 QPM-12 x M-210 0.73 -0.12 2.02 6.09** -1.52 2.19 0.73** 1.50** 0.33 5 QPM-33 x M-210 2.12* -2.81* 5.20** 25.18** 17.72** 8.77** 0.76** 2.02** 1.16** 6 QPM-36 x M-210 2.29* 4.21** 1.23 22.67** 16.13** 3.14** 0.59** 0.93** -0.07 7 QPM-36 x HOL-65 4.29** 3.63** 2.81** 29.01** 24.01** 5.57** 0.75** 1.87** 1.33** 8 HOL-31 x HOL-65 -1.91* -0.67 1.99 5.04 -8.49** 3.43** 0.73** 3.49** -1.42** 9 AML-18 x QPM-48 3.31** 6.35** 3.88** 32.11** 38.29** 6.43** 1.00** 1.44** 1.19** 10 AML-18 x HOL-65 -2.94** 3.41** 7.32** 27.79** 21.77** 3.07** 0.74** 2.59** 1.37** * , ** significant at 5% and 1% levels respectively. Hyderabad Sai Kumar et al. 2002

Table -19 : Pooled Estimates of gca Effects for Different Traits in Inbred Lines of Maize:

37 Table -19 : Pooled Estimates of gca Effects for Different Traits in Inbred Lines of Maize Sr.No. Parents/Pedigree Oil Content Protein Content Starch Content Yield per Plant 100 Grain Weight 1 Pop-30-5029 -0.30 * 0.45** 0.22** 4.07** 1.26** 2 Pop-30-5044-2 -0.14* -0.12* -0.53* 1.20** 0.26* 3 Pop-30-87-1-35 0.09** 0.01 -0.94* -2.66* -0.25* 4 CD(W)-55-1-1-3-1 0.07** -0.13* 0.52** -5.82* -0.80* 5 CD(W)-113-2-1-2-1 0.13** -0.40* -0.31* 1.11** 0.28* 6 X 2 W-3232-1-1-1-1 0.03** 0.09** 0.72** 2.50** -0.29* 7 X 2 W-3527-2-2-1-1 0.14** -0.34** -0.17* 1.21** 0.40** 8 X 1 W-1527-2-2-1-1 0.04** 0.10* 0.95** -0.62* 0.50** 9 X 1 W-1627 -0.05* -0.13* 0.76** -2.30** -0.74* 10 X 1 W-173-3-1-1 -0.14* 0.43** -1.22* 2.09** -0.43* Udaipur Joshi et al. ( 1998)

Table-20 : Pooled sca Estimates for Different Quality and Yield Traits Showing Highest sca Effects for Quality Traits with Economic Heterosis and per se Performance in Maize:

38 Table -20 : Pooled sca Estimates for Different Quality and Yield Traits Showing Highest sca Effects for Quality Traits with Economic Heterosis and per se Performance in Maize Sr. No. Hybrids / Parents sca effects (** Significant at P= 0.01; * Significant at P=0.05) Economic Heterosis for Oil Content Per se performance Oil Content Protein Content Starch Content Grain Yield/ Plant 100 Grain Weight Oil Content Protein Content Starch Content Grain Yield / Plant 100 Grain Weight 1 Pop-30-5044-2 X CD(W)-113-2-1-2-1 0.50 ** -0.28** -3.16** 11.45** 0.97** 5.51 8.23 8.14 57.44 63.51 19.20 2 Pop-30-87-1-35 X CD(W)-55-1-1-3-1 0.43** -0.63** -3.66** 8.60** 1.33** 5.33 8.22 8.18 57.36 49.87 18.87 3 CD(W)-55-1-1-3-1 X X 2 W-3527-2-2-1-1 0.33** -0.36** -2.22** 2.91* -1.12** 4.62 8.16 8.11 61.57 45.25 16.67 4 CD(W)-55-1-1-3-1 X X 2 W-3232-1-1-1-1 0.41** -0.45** 1.88** -0.41 -1.00* 4.24 8.13 8.45 64.56 46.01 16.84 5 CD(W)-113-2-1-2-1 X X 2 W-3527-2-2-1-1 0.33** 0.37** 1.51** 2.78 0.89 2.88 8.02 8.47 62.47 54.04 19.76 6 Pop-30-5044-2 - - - - - - 7.80 8.34 62.36 27.07 17.05 7 Pop-30-87-1-35 - - - - - - 7.70 9.81 63.20 23.05 17.14 8 CD(W)-55-1-1-3-1 - - - - - - 7.17 10.10 56.55 23.43 15.52 9 CD(W)-113-2-1-2-1 - - - - - - 7.52 8.47 57.55 30.15 17.33 10 X 2 W-3232-1-1-1-1 - - - - - - 7.64 8.64 65.63 37.60 17.96 11 X 2 W-3527-2-2-1-1 - - - - - - 7.80 8.47 61.61 26.52 19.53 12 Mahi Kanchan - - - - - - 7.80 9.84 67.67 36.91 15.98 13 Arun - - - - - - 7.67 10.76 67.85 40.17 18.45 14 Kiran - - - - - - 7.72 11.53 69.17 42.08 17.46 15 Deccon-107 - - - - - - 7.55 9.88 65.54 49.11 16.37 Udaipur Joshi et al. (1998)

Table -21 : Performance of Pool of Germplasm Having High Amylose, High Oil Content,High Protein Quality,Waxy with Specialty Starch and Vegetable Type at Hyderabad During Rabi-2003:

39 Table -21 : Performance of Pool of Germplasm Having High Amylose, High Oil Content,High Protein Quality,Waxy with Specialty Starch and Vegetable Type at Hyderabad During Rabi-2003 Sr.No. Pedigree Oil on Dry basis (%) Protein (%) Trypto- Phane (%) 100 Kernel wt. (gm) Sp. Gravity Starch (%) Amylose in Starch (%) Amylo-pectin in Starch (%) 1 CIMMYT 18385 / 20596 4.30 10.02 0.52 23.50 1.17 68.44 45.27 54.73 2 CIMMYT 18405 / 20596 4.92 12.51 0.35 34.60 1.15 67.71 45.99 54.01 3 CIMMYT 18405 / 26074 4.86 11.42 0.50 26.70 1.06 65.88 43.23 56.77 4 CIMMYT 18405 / 26075 4.92 11.79 0.47 34.80 1.16 65.88 41.39 58.61 5 CIMMYT 18385 / 20726 4.65 10.92 0.42 31.60 1.26 65.88 42.53 57.47 6 CIMMYT 22488 / 25418 5.91 11.16 0.47 25.80 1.29 69.17 43.33 56.67 7 CIMMYT 22489 / 25419 5.97 11.00 0.43 28.80 1.15 69.17 40.08 59.92 8 CIMMYT 22490 / 25420 5.11 11.90 0.45 31.00 1.24 70.99 43.33 56.67 9 CIMMYT 22491 / 25421 5.46 12.23 0.43 30.40 1.21 71.00 40.65 59.35 10 CIMMYT 22492 / 25422 5.00 12.20 0.39 29.90 1.20 64.07 51.55 48.57 11 CIMMYT 22493 / 25423 5.40 10.73 0.52 30.40 1.21 62.22 50.43 49.57 12 CIMMYT 22494 / 25424 5.57 10.92 0.47 26.70 1.07 68.08 43.64 56.36 13 CIMMYT 22495 / 25425 4.67 11.36 0.48 40.30 1.15 66.98 46.31 53.69 Maximum 5.97 12.51 0.52 40.30 1.29 71.00 51.55 59.92 Minimum 4.30 10.02 0.35 23.50 1.06 62.22 40.08 48.57 New Delhi Anonymous (2004)

Table- 22 : Three year means (1994-1996) for several traits of nine maize hybrids pollinated by High Oil (ASKC20 )and Normal Oil Pollinators :( LH192 x LH123) :

40 Table - 22 : Three year means (1994-1996) for several traits of nine maize hybrids pollinated by High Oil (ASKC 20 )and Normal Oil Pollinators :( LH192 x LH123) Hybrids Yield t/ha Grain moisture g/kg Oil g/kg Protein g/kg Starch g/kg Kernel dry wt.g / 30 ml Kernel number Kernel dry wt. mg / kernel HOP NOP HOP NOP HOP NOP HOP NOP HOP NOP HOP NOP HOP NOP HOP NOP Normal oil LH 192Sdms x LH82 10.73 10.28 231 233 70 55 112 113 666 674 45.5 45.4 173 164 263 279 LH 192Sdms x LH 126 11.10 10.79 242 241 66 47 113 114 668 684 45.4 46.0 152 149 300 309 LH 192Sdms x LH 211 11.04 10.64 242 238 64 47 113 116 668 680 44.6 45.0 140 142 318 318 LH 192Sdms x LH 213 10.35 10.16 240 238 70 49 114 113 661 679 45.5 45.6 132 142 344 324 Mean 10.81 10.47 239 238 68 49 113 114 666 680 45.3 45.5 149 149 306 308 High oil LH195 Sdms x Lp26 9.16 8.72 272 269 85 65 121 117 645 665 44.9 45.6 163 163 275 281 LH192 Sdms x Lp26 9.47 9.28 262 261 88 66 118 118 642 665 44.7 45.4 175 174 256 252 LH 198 x AEC 342 9.72 9.78 255 257 74 61 112 112 661 673 44.7 44.8 137 143 327 315 LH 198 x UHO 350 8.78 8.78 242 240 84 69 111 112 656 668 45.1 46.1 154 152 294 303 Mean 9.27 9.14 258 257 83 65 116 115 651 668 44.9 45.5 157 158 288 288 Check LH192 x LH123 10.79 10.91 244 246 61 44 112 117 675 684 45.3 45.8 153 148 297 310 Pollinator mean 10.13 9.93 248 247 74 ** 56 114 115 660 ** 675 45.1 45.5 153 153 265** 299 LSD (0.05) 0.40 11 9 5 13 - 14 16 ** Significant at 0.05 and 0.01 probability levels, respectively Urbana Lambert et al . (1998)

Table - 23 : Means of 20-kernel samples for five kernel traits for seven maize hybrids pollinated by a high oil pollinator (HOP : ASKC20) and a normal oil pollinator (NOP : LH192 x LH123) in 1996.:

41 Table - 23 : Means of 20-kernel samples for five kernel traits for seven maize hybrids pollinated by a high oil pollinator (HOP : ASKC 20 ) and a normal oil pollinator (NOP : LH192 x LH123) in 1996. Hybrids Oil concentration (g/kg) Proportion of kernel by wt.(%) Dry wt. (mg) Germ dimensions (mm) Germ Endosperm Germ Endosperm Germ Endosperm Germ Endosperm HOP NOP HOP NOP HOP NOP HOP NOP HOP NOP HOP NOP HOP NOP HOP NOP Normal oil LH 192 Sdms x LH82 430 376 16 13 15.9 13.4 84.2 86.6 40.3 33.0 264 263 9.2 8.6 4.6 3.7 LH 192 Sdms x LH 126 408 356 15 12 14.7 12.2 85.3 87.8 44.9 36.2 260 261 9.1 8.5 4.6 3.9 LH 192 Sdms x LH 211 402 343 13 10 14.8 12.1 85.2 87.9 44.9 37.3 259 272 9.3 8.5 4.6 3.9 LH 192 Sdms x LH 213 395 333 15 12 15.2 12.1 84.8 87.9 52.8 40.4 294 293 9.4 8.7 4.6 3.9 Mean 409 352 15 12 15.2 12.5 84.9 87.6 49.6 36.2 268 262 9.2 8.5 4.6 3.9 High oil 486LH 198 x AEC 2 342 421 375 17 10 16.4 14.2 83.6 85.8 51.5 44.9 264 272 10.3 9.9 4.7 4.6 LH 198 x UHOC 3 350 486 446 17 17 18.9 16.8 81.7 83.2 54.1 48.5 232 240 9.7 9.6 5.8 5.1 Mean 454 411 17 14 17.7 15.5 82.7 84.5 52.8 46.7 246 256 10.0 9.8 5.3 4.9 Check LH192 x LH123 410 358 14 13 14.7 11.8 85.3 88.2 44.0 35.3 255 264 8.9 8.4 4.5 4.0 Mean 422 ** 370 15 NS 12 15.8 ** 13.2 84.3 ** 86.8 47.5 ** 39.4 261 ** 266 8.1 NS 8.9 4.8 NS 4.2 LSD (0.05) 21 - 2.1 2.3 6.3 8 - - CV, % 6.5 1.0 4.6 7.1 5.1 3.1 4.2 6.9 Urbana Lambert et al . (1998)

Single Kernel Phenotypic Recurrent Selection Procedure for increasing Oil Content,Protein Content and Lysine Content in HO Maize Populations(Alexander, et al. ,1967):

42 Single Kernel Phenotypic Recurrent Selection Procedure for increasing Oil Content,Protein Content and Lysine Content in HO Maize Populations(Alexander, et al. , 1967) Select 100-120 ears from the base population ↓ Analyze 100 kernels of each ear by NMR for oil content ↓ Select 3-4 HO kernels ↓ Mix and select kernels of all the ears ↓ Plant 300 to 340 kernels of each population in 30 to 34 rows ↓ Divide field into two equal plots A & B of 15 or 17 rows ↓ Bag tassels and ears of all healthy plants in both A & B plots ↓ →→→  →→→  Plot A pollinated with bulk pollen of plot B and vice versa ↓ Harvest healthy ears and bulk all the kernels ↓ Analyze protein, starch and lysine content by conventional chemical method Discard kernels that have less than standard kernel weight A B Developed BHO, AIHO, Syn. D. O. , RYD and KYHO High Oil Populations (Song et al., 2002)

Limitations of Optimum High-Oil Corn:

43 Limitations of Optimum High-Oil Corn   Contaminated with NOP resulting in a 1 to 2 percentage point reduction in oil content. Grain may dry more slowly than conventional (low-oil) corn.   TC Blend may be more vulnerable to stress at pollination. In a TC Blend, pollination occurs over a 12 to 15 day period versus 5 to 8 days for a standard hybrid. This can be alleviated by growing Optimum high-oil corn under irrigation.   Additional costs involved for increasing the seeding rate by 8 to 10 percent. Seed must be stored and handled separate from conventional (low-oil) corn   Choose a TC Blend that yielded as much as the standard (low-oil) corn hybrids. TC Blend choose the best adapted variety for your area.   Improvements in both the male pollinator and the female grain parent are being made each season and these improvements are eliminating much of the yield drag observed with the initial TC Blends.

PowerPoint Presentation:

44 SWEET CORN

Sweet Corn:

45 Sweet Corn Originated in Mesoamerica and spread to the rest of the world in the late 1400s and early 1500s and known as “a very sweet vegetable ”. Difference between sweet corn and field corn is its genetic make up rather than systemic or taxonomic characterization . Sweet corn has gene su at the sugary locus on chromosome 4 . However, sweet corn mutant types differ in in seed quality, storage, and end use. Several endosperm mutant in traditional sweet corn includes,sugary-1 ( su1 ) and shrunken-2 ( sh2 ) , sugary enhancer-1 ( se1 ) , brittle ( bt2 ), amylase extender ( ae ) , dull ( du ) and waxy ( wx ) . Nutritional quality based on moisture ( 72.7%) and total solids ( 22.3%), carbohydrate ( 81.0%), proteins (13.0%) and lipids (03.5%) comprise major portions of total solids. Also, calcium ( Ca ), phosphorus (P ), iron ( Fe) and potassium (K ) contents are reported on fresh weight bases. Storage material in the endosperm is composed of sugars, glucose and sucrose and of intermediate Polysaccharide products

PowerPoint Presentation:

46 Sugary gene su which blocks conversion of sugar (mostly sucrose) to starch after moving from leaves to the kernel. W rinkled appearance of sweet corn is attributed to a comparatively smaller size of the sugar molecule as opposed to the starch molecule and to the fact that the sugar molecules pack more tightly when dried. Discovered the se gene that enhances sweetness of the corn and extends the time sweet corn stayed tender and edible . This gene also increases the maltose content of the kernel, resulting in enhancement of taste. sh 2 gene resulted in much greater accumulation of sugar than su gene. Taste sensation of a 50% sweeter corn than normal sugary varieties. High sugar content of the sh 2 kernels combined with water soluble polysaccharide in the su kernels balanced flavor, texture and sweetness in the desirable combination.

Table - 24 : Classification of Table Corn (Sweet corn ):

47 Table - 24 : Classification of Table Corn (Sweet corn ) ISOLATION CLASS DESCRIPTIVE TERMINOLOGY HOMOZYGOUS RECESSIV "SUGAR" GENES VARIETY EXAMPLES I Field, dent, or flour corn none Field corn cvs. II*a Sugary or standard sweet corn su Jubilee (yel) Double Taste (bi) Silver Queen (wh) II*b Sugary augmented with sugary enhancer; or "EH" types su se heterozygous su se homozygous Kandy Korn EH (yel) D'Artagnan (bi) Silverado (wh) Miracle (yel) Calico Bell (bi) (no whites) II*c Sugary augmented with shrunken-2; or heterozygous "SWEET gene HYBRID", or "Synergistics “ su sh-2 heterozygous Sugar Loaf (yel) (no bicolors) (no whites) III**a Shrunken-2, super sweets or "Xtra-Sweet" hybrids sh-2 Crisp N Sweet 710 (y) Honey and Pearl (bi) How Sweet It Is (wh) III**b Shrunken-2 augmented with sugary; or "Improved Super sweet Hybrid" sh-2 su heterozygous Sweetie 82 ( yel ) (no bicolors ) (no whites) USA Courter, et al. (2005)

Table -25 : Evaluation of Selected Sweet Corn Lines for Sugar Estimation at Hyderabad During Rabi-2004-05.:

48 Table -25 : Evaluation of Selected Sweet Corn Lines for Sugar Estimation at Hyderabad During Rabi-2004-05. Sr.No. Pedigree Total Sugar (%) 1 Masmandu (sh2 sh2) –X –X – X 6.72 2 Masmandu (sh2 sh-2) – X –X – X 6.76 3 NSSW 8904 F 4 ( sh2 sh2 ) – X – X – X 8.50 4 HSSW (HS) C1 F 3 ( sh2 sh2 ) - X – X – X 6.77 5 Dulce Amanillo ( Su Su ) –X –X – X 16.74 6 Dulce Blanco ( Su Su ) –X – X – X 22.00 7 Bulk Maize de PAK .1A ( Su Su ) – X – X – X 24.03 8 Synthetic Sweet Corn ( Su Su ) – X – X – X 17.40 9 NamPung ( Su Su ) – X – X – X 23.41 10 Pop. A. (S) Co (sh2 sh2 ) – X – X – X 8.84 11 NSS2 W 9301 A (sh2 sh2 ) – X – X – X 9.35 12 Sweet Corn - – X – X – X 7.33 13 Insec 2 ( KU ) – X – X – X 6.74 14 Insec 2 ( KU ) – X – X – X - # -# 9.21 Maximum 24.03 Minimum 6.72 New Delhi Anonymous(2005)

Table - 26 : Background and Endosperm Type of Five Populations and Nine Sweet corn Inbreds:

49 Table - 26 : Background and Endosperm Type of Five Populations and Nine Sweet corn Inbreds Population Endosperm Type Composition NTZ Caribbean Flint Starchy (flinty) 94% Caribbean, 6.0% Temperate NTZ Cuzco Starchy (floury) 93.75% Cuzco, 6.25% Temperate NTZ Mexican Dent Starchy (dent) 93.0% Mexican , 7.0% Temperate NTZ Cateto Starchy (flinty) 92.6% Cateto, 7.4% Temperate NTZ Coroico Starchy (floury) 93.75% Coroico, 6.25% Temperate Inbred: Wh 2 shrunken-2 Wisconsin sweet corn inbred Wh 3 shrunken-2 Wisconsin sweet corn inbred We 6 Sugary, sugary enhancer Wisconsin sweet corn inbred We 7 Sugary, sugary enhancer Wisconsin sweet corn inbred We 9 Sugary, sugary enhancer Wisconsin sweet corn inbred We 10 Sugary, sugary enhancer Wisconsin sweet corn inbred A 7 Sugary Wisconsin sweet corn inbred Wu 5 Sugary Wisconsin sweet corn inbred Wu 4 Sugary Wisconsin sweet corn inbred Wisconsin, Madison Tracy (1990a)

Table - 27 : Mean Performance of Five Populations and Nine Sweet corn Inbreds Averaged Over Crosses for Plant and Ear Traits:

50 Table - 27 : Mean Performance of Five Populations and Nine Sweet corn Inbreds Averaged Over Crosses for Plant and Ear Traits Population/ Inbred Height (cm) Ear Moisture (g/kg) Early Root Lodging (%) Ear (mm) Number Kernel Rows Plant Ear Width Length NTZ Caribbean Flint 214 120 304 3.4 45.1 179 15.5 NTZ Cuzco 208 117 367 11.5 46.6 160 13.5 NTZ Mexican Dent 226 125 329 8.0 46.6 182 15.9 NTZ Cateto 211 122 308 4.3 44.2 177 15.8 NTZ Coroico 208 119 326 7.6 43.9 190 16.2 LSD (0.05) 12.0 4.5 10 5.3 0.5 03 0.3 Wh 2 220 131 354 27.0 44.3 168 14.9 Wh 3 225 137 299 1.8 45.8 186 15.9 We 6 220 118 349 7.6 45.3 175 15.0 We 7 225 131 340 5.1 46.6 177 16.5 We 9 225 128 345 5.2 46.9 181 16.5 We 10 223 126 337 3.5 46.2 178 15.5 A 7 206 113 305 5.5 44.6 186 15.6 Wu 5 182 103 298 3.2 44.0 166 13.3 Wu 4 198 108 314 3.8 46.0 179 15.6 LSD (0.05) 12.7 6.0 20 12.6 0.6 4 0.4 Environments 2 2 6 6 6 6 6 Wisconsin, Madison Tracy (1990a)

Table- 28 : Means of 12 Traits for the Field x Sweet (FS) Hybrids in Factorial Mating Design Experiment :

51 Table - 28 : Means of 12 Traits for the Field x Sweet (FS) Hybrids in Factorial Mating Design Experiment FS Hybrids 10 Ear wt (kg) Yield (Mg) Usable Ear Plants Total Ear Plants Plant Height (cm) Ear Height (cm) Tillers Plants Ear Diam. (mm) Ear Length (mm) Ear Shape$ Tipfill@ Row configuration* B73 2.48 13.62 1.19 2.14 220.0 124.6 0.59 46.9 204.3 3.6 3.0 3.5 B84 2.40 12.38 1.12 2.27 217.8 125.5 0.64 44.3 213.3 3.5 3.0 3.8 A632 2.66 15.33 1.25 1.95 214.8 127.8 0.66 46.3 219.3 3.7 3.4 3.2 Mo17 2.77 11.86 0.93 1.69 218.3 120.9 0.39 46.2 229.5 3.8 3.5 3.1 Mean 2.58 13.30 1.12 2.01 217.7 124.7 0.57 45.9 216.5 3.6 3.2 3.4 LSD (0.05) 0.12 1.73 0.15 0.25 NS NS 0.20 0.8 5.0 NS 0.3 0.3 C7 2.40 11.87 1.09 1.81 200.5 108.2 0.61 43.2 214.6 3.9 3.8 2.8 P39 2.44 13.14 1.17 1.94 213.9 116.2 0.63 44.2 217.2 3.9 3.5 2.8 P51 2.07 14.73 1.41 2.49 204.2 116.9 1.15 43.7 206.2 3.5 3.2 3.5 Ia191 2.53 12.13 1.04 1.85 226.7 129.8 0.38 48.8 215.0 3.6 3.3 3.8 Ia3002 3.10 13.57 0.93 1.71 218.6 126.4 0.24 48.8 210.9 3.5 3.0 3.5 CG4189 2.67 14.50 1.18 2.14 219.6 129.6 0.57 46.0 222.6 3.6 3.0 2.3 CG2730 2.78 13.18 1.03 2.15 240.8 145.8 0.38 46.9 229.9 3.4 2.8 3.1 Mean 2.58 13.30 1.12 2.01 217.7 124.7 0.57 45.9 216.5 3.6 3.2 3.4 LSD (0.05) 0.16 2.30 0.20 0.33 8.1 8.6 0.26 1.1 6.2 NS 0.5 0.4 $ 1= Conical ,5= Cylindrical ; @ 1= No Kernels 5cm from tip , 5= Complete filled ; * 1= No Discernible rows , 5= Straight rows Wisconsin, Madison Tracy (1990b)

Table - 29 : Means of 12 Traits for the Sweet x Sweet (SS) Hybrids in Diallel Experiment:

52 Table - 29 : Means of 12 Traits for the Sweet x Sweet (SS) Hybrids in Diallel Experiment SS Hybrids 10 Ear wt (kg) Yield (Mg) Usable Ear Plants Total Ear Plants Plant Height (cm) Ear Height (cm) Tillers Plants Ear Diam. (mm) Ear Length (mm) Ear Shape $ Tipfill@ Row configu-ration* C7 2.10 8.32 0.87 1.55 179.1 89.7 0.80 43.2 196.5 3.6 3.5 2.9 P39 2.28 9.35 0.89 1.57 181.8 89.2 0.85 44.6 207.7 3.1 2.7 2.5 P51 2.08 10.89 1.13 2.15 180.2 93.1 1.06 43.8 199.1 3.2 2.8 2.5 Ia191 2.33 9.45 0.82 1.41 189.8 96.9 0.62 47.4 194.0 2.8 2.9 2.6 Ia3002 2.38 9.64 0.81 1.39 188.3 97.2 0.54 47.5 198.3 2.9 3.0 2.5 CG4189 2.20 8.61 0.84 1.35 189.0 94.6 0.74 45.4 196.7 2.6 2.8 1.5 CG2730 2.50 10.82 0.93 1.65 201.5 111.0 0.59 47.4 212.9 2.9 2.7 2.2 Mean 2.27 9.58 0.90 1.59 187.1 96.0 0.74 45.6 200.7 3.0 2.9 2.4 LSD (0.05) 0.09 1.32 0.11 0.19 4.6 5.0 0.15 0.6 3.6 0.3 0.3 0.2 $ 1= Conical ,5= Cylindrical ; @ 1= No Kernels 5cm from tip , 5= Complete filled ; * 1= No Discernible rows , 5= Straight rows Wisconsin, Madison Tracy (1990b)

Sweet Corn Hybrids:

53 Sweet Corn Hybrids Shrunken (sh2) hybrids Holiday Exceptionally sweet Bicolor J.W. Courter, et al. (2005) Hamilton , Dave (2005)

PowerPoint Presentation:

54 BABY CORN

Baby Corn:

55 Baby Corn Unfertilized ovules harvested at within 45-55 days , silks just start to emerge above the husk leaves. Silk length about 5-8 cm (depends on each variety) . New vegetable product, crisp and sweet in tastes , uses d ehusked young ear as salad, soup and pickles etc.. Better nutritional quality when compared to some other vegetables (Yodpet, 1979). Free of pesticidal residues due to being covered by husks. After harvested of young ears the husks, green leaves and stems of the plants use as fodder in dairy farms. E ars in light yellow colour with regular row arrangement 8-10 cm long with a diameter of 7-17 mm preferred in the market. Any type of corns can be grown as baby corn crop. Varieties can be open pollinated, composites or hybrids of field corn, sweet corn or waxy corn . Hybrid baby becoming get popularity since 1989 in Thailand. Thailand is one of the major export countries for many forms of baby corn like frozen fresh ears or in cans or glass bottles.

Genetics of Baby Corn:

56 Genetics of Baby Corn Two different recessive genes for the tassel-seed trait ts2 and ts1 on chromosomes 1 and 2 respectively and silk restorers for the silkless gene sk also on chromosome 2. governed traits for development of baby corn. Double mutants sk sk, ts2 ts2 and sk sk, ts1 ts1 with selection for a normal sexual balance, function as normal corn. Double hybrid ts2 Ts2, ts1 Ts1, sk sk between these two double mutants is 100% silkless because each parent carries the normal dominant allele that masks the recessive tassel-seed gene in the other parent. (Galinat,2002 ) Baby ear production is further enhanced by the silkless condition because all of the energy becomes devoted to producing more cobs instead of going first into silk growth and then into kernel development.

Table - 30 : Nutritive Values of Baby corn and Important Vegetables (in 100 gm.):

57 Table - 30 : Nutritive Values of Baby corn and Important Vegetables (in 100 gm.) Nuritional Compounds Baby corn Cauliflower Cabbage Tomato Jackfruit Okra Carrot Brinjal Palak Moisture(%) 89.10 90.80 91.90 93.90 91.40 89.60 94.40 92.70 92.10 Carbohydrates (gm) 8.20 4.00 4.60 3.60 4.50 6.40 3.40 4.00 2.90 Protein (gm) 1.90 2.60 1.80 1.90 1.70 1.90 0.70 1.40 2.00 Fat (gm) 0.20 0.40 0.10 1.90 0.10 0.20 0.10 0.30 0.70 Calcium (mg) 28.00 33.00 18.00 20.00 50.00 66.00 50.00 18.00 73.00 Phosphorous (mg) 86.00 57.00 47.00 36.00 28.00 56.00 22.00 47.00 21.00 Iron (mg) 0.10 1.50 0.90 1.80 1.70 1.50 0.40 0.90 10.90 Thiamine 0.50 0.04 0.04 0.07 0.08 0.07 0.06 0.04 0.03 Riboflavin 0.08 0.10 0.11 0.01 0.06 0.01 0.02 0.11 0.07 Ascorbic Acid 11.00 56.00 12.00 31.00 11.00 13.00 15.00 12.00 28.00 Yodpet (1979)

Table - 31 : Performance of Different Entries in Baby corn Trial at Pantnagar During Kharif - 1999:

58 Table - 31 : Performance of Different Entries in Baby corn Trial at Pantnagar During Kharif - 1999 Sr.No. Entry Cob Yield with Husk (q/ha) Baby corn Yield (q/ha) Plant Height (cm) Ear Height (cm) Ear Length (cm) Ear Diameter (cm) Fodder Yield (q/ha) 1 (CM128xCM129) x Tarun x 83-1-3-2 64.18 19.42 215.30 92.30 8.03 1.00 195.60 2 (D831X 41-1-2-1xD831X 39-2-1-1) x D831X 41-1-2-1 40.00 10.00 206.30 84.70 7.33 1.27 204.40 3 (TarunX83-1-3-2 x D831X39-2-1-1) x D831X 41-1-2-1 48.89 12.44 213.70 85.30 7.20 1.03 208.90 4 [(D741X1-1-1-10-4-4 x D831X39-2-1-1) x Navin) x D831X 41-1-2-1] 60.00 11.78 237.30 93.30 8.03 1.03 316.50 5 D921 x D941 65.78 16.22 246.30 106.70 7.43 1.07 306.70 6 D921 x Tarun 45.78 11.56 239.30 100.70 8.77 1.07 192.00 7 D921 x Surya 63.55 17.78 234.30 104.70 6.77 1.03 208.90 8 D921 x Navin 47.91 12.00 230.70 90.30 8.60 1.23 200.90 9 D941 x Tarun 38.22 10.89 205.70 94.30 7.97 1.13 146.70 10 D941 x Navin 77.33 17.55 244.30 97.00 8.20 0.93 293.30 11 Tarun x Surya 67.82 12.89 232.00 100.00 7.63 1.00 236.40 12 Tarun x Navin 49.78 11.64 242.70 97.70 10.03 1.13 240.00 13 Surya x Navin 35.21 8.67 244.70 96.70 8.23 1.03 195.60 14 Navin 58.22 17.11 244.70 100.70 6.37 1.07 226.70 15 Prakash 45.78 12.31 248.30 118.70 6.50 1.10 306.70 16 VL-42 67.11 18.98 213.30 86.00 9.60 1.27 182.20 17 HIM-129 69.25 15.64 215.00 89.30 7.90 1.20 235.60 Mean (X) 55.58 13.93 230.23 96.37 7.92 1.09 229.22 CD (5%) 19.30 1.69 15.60 14.30 1.99 0.28 61.90 CV (%) 19.80 7.30 4.08 8.90 15.10 15.10 16.20 Pantnagar Verma (2001)

Table - 32 : Summary of Some Important Findings on Breeding of Baby corn:

59 Table - 32 : Summary of Some Important Findings on Breeding of Baby corn 1. gca and sca with fixed variance component were significant for young ear weight of standard size. Moderate importance of additive genetic effects were found for young ear weight of standard size. Suwansa et al. (1998) 2. Predominance of additive effects for weight of ears husked and dehusked. However, Equivalence of additive and non-additive gene effects were recorded for length of ears dehusked, diameter of ears husked and dehusked, plant height and ear height Luis et al. (2004)

Table-33 : Magnitude of Heterosis Over Mid Parent, Better Parent and per se Performance for Ear Yield and Other Character in Baby Corn (7x7 half diallel):

60 Table -33 : Magnitude of Heterosis Over Mid Parent, Better Parent and per se Performance for Ear Yield and Other Character in Baby Corn (7x7 half diallel) Sr. No. Character MID PARENT BETTER PARENT MEAN VALUES Range No. of Superior Crosses Best Cross Range No. of Superior Crosses Best Cross Best Cross Value 1 Days to 50% Silking -8.875 to 11.186 8 S-18E X N-3 -3.165 to 18.868 5 S-18E X T 2 E S-18E X SNT-Pool S-18E X T 2 E S-18E X SNT-Pool 51 51 2 Number of Effective Cob Per Plant -23.829 to 24.481 14 S-18E X T 2 -26.946 to 16.966 9 SNT-Pool X Golden Baby S-18 X S-18E S-18 X S-18E SNT-Pool X Golden Baby 2 1.95 3 Ear Length (cm) -18.949 to 22.526 13 S-18 X S-18E SNT-Pool X Golden Baby -25.72 to 17.063 10 S-18 X S-18E SNT-Pool X Golden Baby T 2 E X Golden Baby S-18 X S-18E 10.36 10.15 4 Ear Diameter (mm) -18.74 to 27.065 12 S-18E X T 2 S-18 X S-18E -20.22 to 25.280 10 S-18 X T 2 T 2 E X N-3 S-18 X T 2 S-18 X S-18E 14.87 13.33 5 Dehusked Ear Weight (gm) -31.776 to 23.596 8 S-18E X T 2 S-18E X N-3 -35.069 to 23.596 7 S-18 X T 2 S-18E X N-3 S-18 X T 2 S-18E X N-3 11 10 6 T.S.S. (%) -5.547 to 18.445 12 S-18 X SNT-Pool N-3 x SNT-Pool -8.110 to 17.847 9 N-3 x SNT-Pool S-18 X SNT-Pool S-18 X SNT-Pool N-3 x SNT-Pool 10.97 10.87 7 Breaking Pressure (gm) -49.96 to 92.848 8 S-18 X S-18E S-18E X T 2 -55.081 to 91.514 6 S-18 X S-18E S-18 X T 2 S-18 X S-18E S-18 X Golden Baby 1200 1116.7 8 Cutting Pressure (gm) -32.94 to 33.166 12 S-18E X N-3 S-18E X T 2 -13.715 to 103.69 9 T 2 X SNT-Pool T 2 X N-3 S-18E X T 2 S-18E X N-3 207.5 213.3 9 Disease Incidence (10 point scale) -32.25 to 30.612 11 S-18E X SNT-Pool T 2 X SNT-Pool -26.66 to 52.380 5 S-18E X SNT-Pool T 2 X SNT-Pool S-18E X SNT-Pool T 2 X SNT-Pool 3.66 4 10 Fodder Yield (q / ha) -20.865 to 39.039 11 T 2 X Golden Baby T 2 E X N-3 -32.837 to 27.780 8 T 2 X T 2 E T 2 X Golden Baby T 2 X Golden Baby T 2 E X N-3 33.94 30.82 11 Dehusked Ear Yield (q / ha ) -36.40 to 44.992 7 S-18E X T 2 S-18 X S-18E -38.153 to 35.101 5 S-18 X T 2 S-18 X S-18E S-18 X T 2 S-18 X S-18E 12.16 11.74 West Bengal Nandy et al.( 2004)

Table-34 :Mean Performance of Baby Corn , Experimental Hybrids and Composites Over Locations ( Almora, Bajaura, DMR Delhi, Varanasi , Mandya and Coimbatore ) During Kharif-2005:

61 Table -34 :Mean Performance of Baby Corn , Experimental Hybrids and Composites Over Locations ( Almora, Bajaura, DMR Delhi, Varanasi , Mandya and Coimbatore ) During Kharif-2005 Sr.No. Pedigree Yield Without Husk (Kg/ha) Yield With Husk (Kg/ha) Maize Fodder Yield (Kg/ha) Plant Height (cm) Ear Height (cm) 1 ICY-9006 1125 4778 16119 141 57 2 DBEH-10202 1254 6000 13521 141 55 3 VL-Baby Corn-1 1426 6362 12744 149 57 4 FH-3161 1086 5002 16451 135 51 5 FH-3246 1061 5465 17300 148 58 6 X -3342 1315 5628 19975 150 62 7 HIM-129 1304 5539 13391 133 50 8 MAHI KANCHAN 1119 5252 16919 145 60 Mean 1211 5503 15802 143 56 New Delhi Anonymous (2005)

PowerPoint Presentation:

62 POP CORN

PowerPoint Presentation:

63 Mexico Special type of flint corn which puffs up when it is heated in oil or by dry heat. Originated from a wild grass and scientific name - Zea mays everta Popular as snack food all over the world and often served with butter and salt or butter flavored soy extract. Naturally very nutritious as it is high in fiber, low in calories, contains no sodium, and is sugar and fat free. Each kernel contains a certain amount of moisture in its starchy endosperm. Pericarp is thick and impervious to moisture. Internal pressure of about 9 atm generates at heating by steam build until the pericarp suddenly ruptures, causing a small explosion. Unpopped kernels do not have enough moisture to create enough steam for an explosion. Popular popcorn in United States - Orville Redenbacher's , Act II , Jiffy Pop , Pop Secret , Jolly Time , Aussie Crunch , Newman's Own , Dale and Thomas and Black Jewell . India - Amber Popcorn and VL-Popcorn .

Table-35 : Partial and Simple Correlations and Significance Test for Partial Correlations between Popping Expansion(PE), 100 Kernel weight(100KW),Grain Production(GP) and Percentage of Ears Attacked by Pests(PEAP) and Diseases(PEAD) Obtained with 106 S4 Families of Popcorn of Beija-Flor Population:

64 Table -35 : Partial and Simple Correlations and Significance Test for Partial Correlations between Popping Expansion(PE), 100 Kernel weight(100KW),Grain Production(GP) and Percentage of Ears Attacked by Pests(PEAP) and Diseases(PEAD) Obtained with 106 S 4 Families of Popcorn of Beija-Flor Population Variables Paired r simple r partial t -student PE x 100KW 0.06 0.08 0.1724 ns PE x GP 0.42 0.51 1.3397 ns PE x PEAP 0.01 0.42 1.0255 ns PE x PEAD -0.23 -0.44 -1.0960 ns 100KW x GP 0.06 0.00 -0.0062 ns 100KW x PEAP -0.04 -0.09 -0.1953 ns 100KW x PEAD 0.02 0.09 0.1990 ns GP x PEAP -0.27 -0.43 -1.0683 ns GP x PEAD -0.10 0.32 0.7647 ns PEAP x PEAD 0.70 0.76 2.5964* ns = non significant ; * significant at the 5% level Brazil Arnhold et al. (2006)

Table-36 : Direct (DE) and Indirect Effects (IE) on Popping Expansion of Variables: 100 Kernel Weight (B), Grain Production (C) , Percentage of Ears attacked by pests (D) and Percentage of Ears attacked by Diseases (E) :

65 Table -36 : Direct (DE) and Indirect Effects (IE) on Popping Expansion of Variables: 100 Kernel Weight (B), Grain Production (C) , Percentage of Ears attacked by pests (D) and Percentage of Ears attacked by Diseases (E) Characteristics Effects Estimator Estimative 100 Kernel Weight DE on PE IE via GP IE via PEAP IE via PEAD Total ρ AB ρ AC r BC ρ AD r BD ρ AE r BE r BD 0.0624 0.0304 -0.0216 -0.0112 0.0600 Grain Production DE on PE IE via 100KW IE via PEAP IE via PEAD Total ρ AC ρ AB r BC ρ AD r CD ρ AE r CE r AC 0.5063 0.0037 -0.1459 0.0559 0.4200 Ear Attacked by Pests (%) DE on PE IE via 100KW IE via GP IE via PEAD Total ρ AD ρ AB r BD ρ AC r CD ρ AE r DE r AD 0.5405 -0.0025 -0.1367 -0.3913 0.0100 Ear Attacked by Diseases (%) DE on PE IE via 100KW IE via GP IE via PEAP Total ρ AE ρ AB r BE ρ AC r CE ρ AD r DE r AE -0.5589 0.0012 -0.0507 0.3784 -0.2300 Coefficient of determination Effect of the residual variable 0.3504 0.8060 Brazil Arnhold et al. (2006)

Table - 37 : Mean squares , general mean , maximum and minimum family mean values and coefficients of variation of the seven evaluated traits in the S1 families:

66 Table - 37 : Mean squares , general mean , maximum and minimum family mean values and coefficients of variation of the seven evaluated traits in the S 1 families California Daros et al. (2004)

Table - 38 : Phenotypic variance (σ2p) , genotypic variance (σ2g), residual variance (σ2), heritability on the family mean (h2-%) and genetic gain (GG) estimated for the evaluated traits :

67 Table - 38 : Phenotypic variance ( σ 2 p ) , genotypic variance ( σ 2 g ), residual variance ( σ 2 ), heritability on the family mean (h 2 -%) and genetic gain (GG) estimated for the evaluated traits California Daros et al. (2004)

Table – 39 : Estimates of the original population mean (X0) selected population mean (Xs) lower and upper limits and genetic gains (%) predicted for popping expansion (PE) and grain yield (GY) in both cycles :

68 Table – 39 : Estimates of the original population mean ( X 0 ) selected population mean (X s ) lower and upper limits and genetic gains (%) predicted for popping expansion (PE) and grain yield (GY) in both cycles California Daros et al. (2004)

Conclusion:

69 Conclusion Lysine , tryptophan and methionine contents can be increased by backcross and modified backcross methods. opaque2 -specific SSR Marker can be used to identify opaque2 gene in breeding material. High oil corn trait is control by oy mutant gene expressed in germ. Predominant role of additive gene action for oil content and protein content . Highest estimate of economic heterosis for oil content. Oil was highly but negatively correlated with starch content . su , sh2 and se1 mutant alleles express in the endosperm cells of sweet corn kernel. Sweet corn population has narrow genetic base. Field corn inbreds offer a potential source of desirable genes for tolerance to agro-economic traits. Baby corn trait is controlled by ts and sk alleles . Additive genetic effects were significant for the ear weight and other agro-economical characters. Positively correlated responses were found between yield and popping expansion considering a simultaneous selections to both characters .

Future Thrust:

70 Future Thrust Need of research on QPM improvement along with yield, biotic and abiotic stresses. Research on breakage of linkage between high oil content and low starch production will be needed. Broad genetic base is to be created in germplasm pools and populations for sweet corn improvement . More research will be needed to improve the uniformity for popping expansion and other nutritive traits. Advance biotechnological techniques will be needed to improve the above mentioned value addition traits.

PowerPoint Presentation:

71 Thank you...

authorStream Live Help